

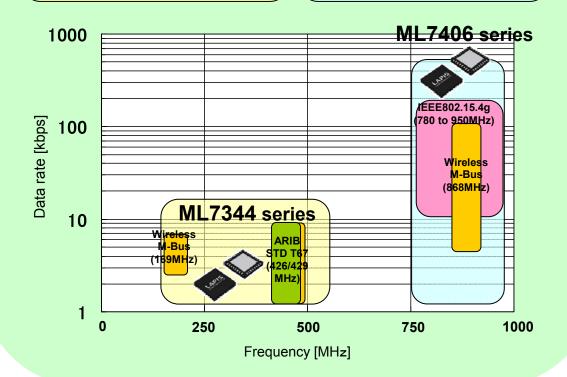
ML7406

868MHz SRD RF transceiver IC

■Overview

ML7406 is a low power consumption sub GHz RF transceiver, which includes RF, IF, MODEM, baseband processor, HOST interface. ML7406 can be used for mainly ISM(Industrial, Scientific and Medical) or SRD(Short Range Device). (EN13757-4:2011: Wireless M-BUS) packet format can be processed by on-chip hardware.

ML7406 and ML7344 have the same package, pins assignment and major registers.


(32pin WQFN)

ML7344 series

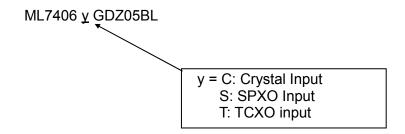
RF: 160MHz to 510MHz Rate: 1.2kbps to 15kbps (FSK/GFSK) Channel Spacing: 25 kHz Wireless M-Bus ARIB STD-T67

ML7406 series

RF: 750MHz to 960MHz Rate: 1.2kbps to 500kbps (FSK/GFSK) Channel Spacing: 100 kHz to 1.6MHz Wireless M-Bus IEEE802.15.4g (FEC not supported) ARIB STD-T108

■Features

- Supported standard
 - ETSI EN 300 220 (Europe)
 - EN 13757-4:2011 (Wireless M-BUS)
 - IEEE802.15.4g
 - ARIB STD T108 (Japan)
- RF frequency: 750MHz to 960MHz
- Realized high resolution modulation by using fractional N type PLL direct GFSK modulation
- Modulation: GFSK/GMSK/FSK/MSK (MSK is a case that FSK modulation index = 0.5)
- Data transmission rate: 1.2 to 500 kbps
- Data encoding/decoding by HW: NRZ, Manchester, 3 out of 6
- Data whitening by HW
- Programmable frequency channel filters
- Programmable frequency deviation function
- TX/RX data inverse function
- 26 MHz oscillator circuits version (ML7406C)
- TCXO (26 MHz) direct input version (ML7406T)
- SPXO input(CMOS level) version (ML7406S)
- Oscillator capacitance fine tuning function
- On chip low speed RC oscillation circuit
- Low speed clock adjustment function
- frequency fine tuning function (using fractional N type PLL)
- Synchronous serial peripheral interface(SPI)
- On-chip TX PA. (20 mW / 10 mW / 1 mW selectable)
- TX power fine tuning function (±0.2 dB)
- TX power automatic ramping control
- External TX PA control function
- RSSI indicator and threshold judgment function
- High speed carrier checking function
- AFC function (IF frequency automatic adjustment by Fractional N type PLL adjustment)
- Antenna diversity function
- Automatic Wake UP, auto SLEEP function (external RTC input or internal RC oscillator selectable)
- General purpose timer (2ch)
- Test pattern generator (PN9, CW, 01 PATTERN, ALL"1", ALL"0" OUTPUT)
- Packet mode function
 - Wireless M-BUS packet format (Format A/B)
 - General purpose packet format (Format C)
 - Max.255 byte (Format A/B), 204t byte (Format C)
 - TX FIFO (64 byte), RX FIFO (64 byte)
 - RX Preamble pattern detection (Max.4 byte)
 - Automatic TX preamble length generation (Max.length 16383 byte)
 - SyncWord setting function (Max. 4byte × 2 type)
 - Program CRC function (CRC32/CRC16/CRC8 selectable, fully programmable polynomial)
 - Wireless M-BUS field checking function (C-field/M-field/A-field can be detected automatically) (Note) Proprietary packet format is possible depending on setting
- Supply voltage
 - 1.8 V to 3.6 V (TX power 1 mW mode)
 - 2.3 V to 3.6 V (TX power 10 mW mode)
 - 2.6 V to 3.6 V (TX power 20 mW mode)
- Operational temperature -40 °C to 85 °C


• Current consumption (868 MHz)

```
Deep sleep mode
                       0.1 μA (Typ.)
Sleep mode2
                       0.56 μA (Typ.)
                                          (retains registers, FIFO)
Idle mode
                       1.4 mA (Typ.)
                       34 mA (Typ.)
TX = 20 \text{ mW}
                       24 mA (Typ.)
     10 mW
                        13 mA (Typ.)
      1 mW
RX
                        15 mA (Typ.)
                                          (@100kbps)
```

• Package

32pins WQFN $(5\text{mm} \times 5\text{mm})$ P-WQFN32-0505-0.50 Lead free, RoHS compliance

■Product Name

■Description Convention

1) Numbers description

'0xnn' indicates hexa decimal. '0bnn' indicates binary.

Example: 0x11=17(decimal), 0b11=3(decimal)

2) Registers description

[<register name>: B<Bank No> <register address>] register

Example: [RF STATUS: B0 0x0B] register

Register name: RF_STATUS

Bank No: 0

Register address: 0x0B

3) Bir name description

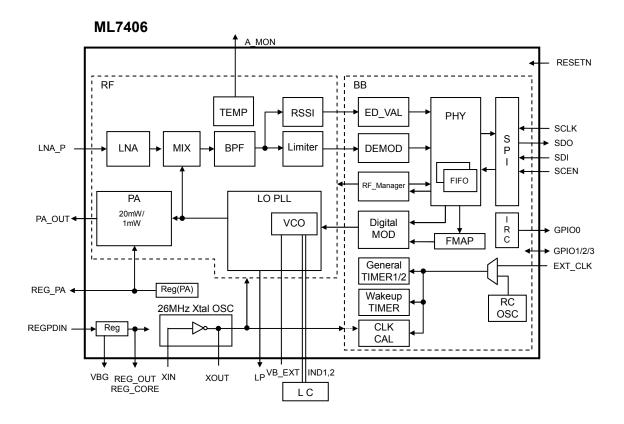
<bit name> ([<register name>: B<Bank No> <register address>(<bit location>)])

Example: **SET_TRX[3:0]** ([**RF_STATUS: B0** 0x0**B**(3-0)])

Bit name: SET_TRX

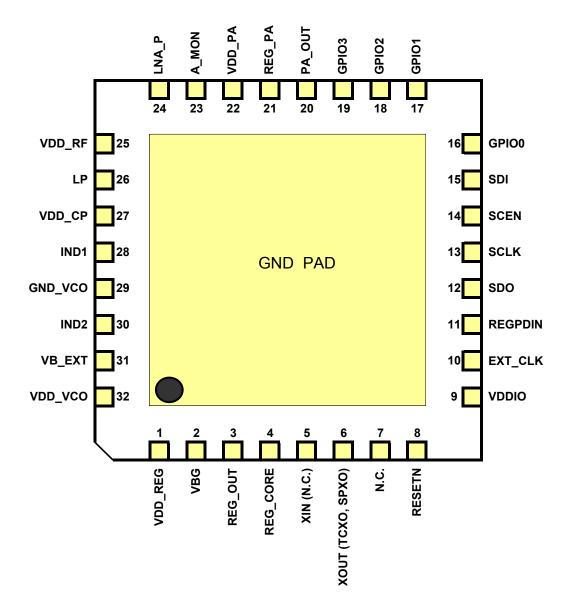
Register name: RF_STATUS

Bank No: 0


Register address: 0x0B Bit location: bit3 to bit0

4) In this document

"TX" stands for transmittion.


"RX" stands for reception.

■Block Diagram

■PIN Configuration

32 pin WQFN

NOTE: GND pad in the middle of the LSI is reverse side (name:reversed side GND)

■PIN Definitions

Symbols

 $\begin{array}{lll} I & : Digital \ input \\ O & : Digital \ output \\ Is & : Shmidt \ Trigger \ input \\ IO & : Digital \ input/output \\ I_A & : Analog \ input \\ O_A & : Analog \ output \ 1 \\ O_{AH} & : Analog \ output \ 2 \\ IO_A & : Analog \ input/output \end{array}$

 $\begin{array}{ll} O_{RF} & : RF \ output \\ V_{DDIO} & : I/O \ power \ supply \\ V_{DDRF} & : RF \ power \ supply \end{array}$

GND : Ground

•RF and Analog pins

Pin	Pin name	Reset state	I/O	Active Level	function
20	PA_OUT	-	O _{RF}	-	RF antenna output
23	A_MON	-	O _A	Temperature information output (*1)	
24	LNA_P	-	I _A	-	RF antenna input
26	LP	-	IO _A	-	Pin for loop filter
28	IND1	-	IO _A	-	Pin for VCO tankl inductor
30	IND2	-	IO _A	-	Pin for VCO tank inductor
31	VB_EXT	-	IO _A	-	Pin for smothing capacitor for internal bias

^{*1} This pin can be configured by [MON_CTRL:B0 0x4D] register, no signal assigned as default setting.

•SPI Interface pins

Pin	Pin name	Reset state	I/O	Active Level	function
12	SDO	O/L	0	H or L	SPI data output or DCLK (*1)
13	SCLK	I	IS	P or N	SPI clock input
14	SCEN	I	IS	L	SPI chip enable L: enable H: disable
15	SDI	I	IS	H or L	SPI data input or DIO (*1)

^{*1} Please refer to "DIO function"

•Regulator pins

Pin	Pin name	Reset state	I/O	Active Level	function	
2	VBG (*1)	ı	Оан	-	Pin for decouppling capacitor	
3	REG_OUT (*1)	ı	Оан	-	Requiator1 ouput (typ. 1.5V)	
4	REG_CORE	1	O _A	-	Requiator2 ouput (typ. 1.5V)	
11	REGPDIN	Ι	1	Н	Power down control pin for regulator Fix to 'L' for nomal use. "H" is for deep sleep mode.	
21	REG_PA (*1)	ı	Оан	_	Regulator output for PA block	

^{*1} These pin will output 0V in the sleep state.

Miscellaneous

Pin	Pin name	Reset state	I/O	Active Level	function
5	XIN N.C.(*2)	 -	I _A	P or N -	26MHz crystal pin1 (Note) In case of TCXO or SPXO, it must be open.
6	XOUT TCXO(*2) SPXO(*2)	0	O _A I _A I	P or N	26MHz crystal pin 2 or TCXO input, SPXO input
8	RESETN	I	I _S	L	Reset L: Hardware reset enable (Forcing reset state) H: Normal operation
10	EXT_CLK	I	Ю	P or N	Digital I/O (*3) Reset state: External RTC (32kHz) input.
16	GPIO0	O/H	IO or OD(*1)	H or L	Digital GPIO (*4) Reset state: interrupt indication signal output
17	GPIO1	O/L	IO or OD(*1)	H or L	Digital GPIO (*5) Reset state: clock output
18	ANT_SW/ GPIO2	O/L	IO or OD(*1)	H or L	Digital GPIO (*6) Reset state: Antenna diversity selection control signal
19	TRX_SW/ GPIO3	O/L	IO or OD(*1)	H or L	Digital GPIO (*7) Reset state: TX –RX selection signal control

(Note)

^{*2} The following pin names are different depend on products.

Pin No.	ML7406C	ML7406S	ML7406T
5	XIN	N.C.	N.C.
6	XOUT	SPXO	TCXO

(Note)

In case of using TCXO/SPXO, set TCXO_EN or SPXO_EN =0b1. Please make sure only one of the register TCXO_EN, SPXO_EN, XTAL_EN_EN is set to 0b1.

^{*1} OD is open drain output.

^{*3} Please refer to [EXTCLK_CTR: B0 0x52] register.

^{*4} Please refer to [GPIO0_CTRL: B0 0x4E] register

- *5 Please refer to [GPIO1_CTRL: B0 0x4F] register
- *6 Please refer to [GPIO2 CTRL: B0 0x50] register
- *7 Please refer to [GPIO3_CTRL: B0 0x51] register

Power supply/GND pins

Pin	Pin name	Reset state	I/O	Active Level	function
1	VDD_REG	ı	V_{DDIO}	-	Power supply pin for Regulator (input voltage: 1.8V to 3.3V)
9	VDDIO	1	V_{DDIO}	-	Power supply for digital I/O (input voltage: 1.8 to 3.6V)
22	VDD_PA	ı	V_{DDIO}	ı	Power supply for PA block (input voltage: 18 to 3.6V, depending on TX mode)
25	VDD_RF	-	V_{DDRF}	-	Power supply for RF blocks (REG-OUT is connected, typ.1.5V)
27	VDD_CP	-	V_{DDRF}	-	Power supply for charge pump (REG-OUT is connected, typ.1.5V)
32	VDD_VCO	_	V_{DDRF}	-	Power supply for VCO (REG_OUT is connected, typ.1.5V)
29	GND_VCO	1	GND	_	GND for VCO

Unused pins treatment

Unused pins treatments are as follows:

Unused pins treatment

Pin name	Pins number	Recommended treatment
N.C.	5	Open
N.C.	7	GND or Open
EXT_CLK	10	GND
A_MON	23	GND
GPIO0	16	Open
GPIO1	17	Open
GPIO2	18	Open
GPIO3	19	Open

(Note)

- *1 If input pins are high-impedence state and leave open, excess current could be drawn. Care must be taken that unused input pins and unused I/O pins should not be left open.
- *2 Upon reset, GPIO1 pin is CLK_OUT function. If this function is not used, the clock must to be disabled by setting 0b000 to GPIO1_IO_CFG[2:0] ([GPIO1_CTRL: B0 0x4F (2-0)]). If this pin is left open while outputing clock signal, it may affect RX sensitivity.

■Electrical Characteristics

• Absolute Maximum Rating

Ta=-40°C to +85°C and GND=0V is the typical condition if not defined specific condition.

item	symbol	condition	Rating	unit
I/O Power supply	V_{DDIO}		-0.3 to +4.6	V
RF Power supply	V_{DDRF}		-0.3 to +2.0	V
RF input power	P _{RFI}	Antenna input in RX	0	dBm
RF output Voltage	V_{RFO}	PA_OUT(#20)	-0.3 to +4.6	V
Voltage on Analog Pins 1	V _A		-0.3 to +2.0	V
Voltage on Analog Pins 2	V_{AH}		-1.0 to +4.6	V
Voltage on Digital Pins	V _D		-0.3 to +4.6	V
Digital Input Current	IDI		-10 to +10	mA
Digital Output Current	IDO		-8 to +8	mA
Power Dissipation	Pd	Ta= +25°C	1.2	W
Strage Temperature	Tstg	-	-55 to +150	°C

•Recommended Operation Conditions

Item	Symbol	Condition	Min	Тур	Max	Unit
Power Supply (I/O)	VDDIO	VDDIO pin and VDD_REG pin (*1)	1.8	3.3	3.6	٧
		VDD_PA pin TX power 1mW mode	1.8	3.3	3.6	V
Power Supply (PA)	VDDPA	VDD_PA pin TX Power 10mW mode	2.3	3.3	3.6	V
		VDD_PA pin TX Power 20mW mode	2.6	3.3	3.6	V
Operational Temperature	Та	-	-40	+25	+85	°C
Digital Input Rising Time	TIR	Digital Input pins (*1)	-	-	20	ns
Digital InputFalling Time	TIF	Digital Input pins (*1)	-	-	20	ns
Digital Output Output Load	CDL	All Digital Output pins	-	-	20	pF
Master Clock Frequency (XIN,XOUT,TCXO,SPXO pins)	FMCK1	-	(*2)	26	(*2)	MHz
Master Clock Accuracy (*2)	ACMCK1	-	-85	-	+85	ppm
TCXO Input Voltage	Vтсхо	DC Cutoff TCXO Optionis selected	0.8	-	1.5	Vpp
SPI Clock InputFrequency	FSCLK	SCLK pin	0.032	2	16	MHz
SPI Clock Input Duty Cycle Ratio	DSCLK	SCLK pin	45	50	55	%
RF Frequency	FRF		750	-	960	MHz

^{*1} In the pin description, I or Is are specified as the I/O.

^{*2} Indicating frequency deviation during TX-RX operation. In order to support various standards, please apply the frequency accuracy for each standard to meet the requirements.

Specification	Required accuracy		
Wireless M-Bus S mode	±60 ppm(Meter)		
Wireless W-Bus S mode	±25 ppm(Other)		
Wireless M-Bus T mode	±60 ppm(Meter)		
Wireless W-Bus Tilloue	±25 ppm(Other)		
Wireless M-Bus C mode	±25 ppm		
ARIB STD-T108	±20 ppm		

(Note) Below values are not taking individual LSI variations into consideration.

Power Consumption

Item	Synbol	Condition	Min	Typ (*2)	Max (*5)	Unit
Power Consumption (*1)	IDD_DSLP	Deep Sleep mode (Not retaining Registers, all function halt)	-	0.1	9 (0.8)	μΑ
	IDD_SLP2	Sleep mode 2 (*3)	-	0.56	20 (3.2)	μΑ
	IDD_SLP3	Sleep mode 3 (*3)	-	0.7	20.2 (3.2)	μА
	IDD_SLP4	Sleep mode 4 (*3)	_	2.5	22 (5.1)	μА
	IDD_IDLE	Idle state	-	1.4	-	mA
	IDD_RX	RF RX state (*4)	-	15	-	mA
	IDD_TX1	RF TX state (1mW)(*4)	-	13	-	mA
	IDD_TX10 RF TX state (10mW) (*4)		-	24	-	mA
	IDD_TX20	RF TX state (20mW) (*4)	-	34	-	mA

^{*1} Power consumption is sum of current consumption of all power supply pins.

^{*3} The definition od each sleep stae is shown in following table.

State.	Register	FIFO RC Osc. (32kHz)		Low clock timer			
Sleep mode 1	ML7406 does not support Sleep mode 1						
Sleep mode 2	Retain	Retain	OFF	-			
Sleep mode 3	Retain	Retain	External Input	ON			
Sleep mode 4	Retain	Retain	ON	ON			

^{*4} Current consumption when RF Frequency is 868MHz.

(Note)

It is inhibited the trnasiton from sleep modes to deep sleep mode in one power supply cycle.

^{*2 &}quot;Typ" value is centre value under condition of VDDIO=3.3V, 25°C.

^{*5 ()} means maximum value (reference value) under condition of 25°C.

•DC characteristics

Item	Symbol	Condition	Min	Тур	Max	Unit
Voltage Input High	VIH1	Digital Input pin	VDDIO × 0.75	-	VDDIO	V
voltage input riigii	VIH2	XIN pin	1.35	-	1.5	٧
Valtage lamet Law	VIL1	Digital Input pin	0	-	VDDIO × 0.18	V
Voltage Input Low	VIL2	XIN pin	0	-	0.15	V
SchmitTriggerThreshold High Level	VT+	RESETN pin SDI, SCLK, SCEN pins	-	1.2	VDDIO × 0.75	V
riigir Level		EXT_CLK pin				
SchmitTriggerThreshold Low Level	VT-	RESETN pin SDI, SCLK, SCEN pins	VDDIO × 0.18	0.8	-	٧
		EXT_CLK pin				
	IIH1	Digital input pins	-1	-	1	μA
Input Leakage Current	IIH2	XIN pin	-0.3	-	0.3	μΑ
input Leakage Current	IIL1	Digital input pins	-1	-	1	μΑ
	IIL2	XIN pin	-0.3	-	0.3	μA
Tri-state output current	IOZH	Digital input pins	-1	-	1	μA
leakage	IOZL	Digital input pins	-1	-	1	μΑ
Voltage Output level H	Voн	IOH=-4mA	VDDIO × 0.8	-	VDDIO	V
Voltage Output level L	VOL	IOL=4mA	0	-	0.3	V
Regulator Output	REGMAIN	REG_CORE pin, REG_OUT pin, applicable to all states except SLEEP state	1.4	1.5	1.6	V
voltage	REGSUB	REG_CORE pin Sleep state	0.95	1.3	1.65	V
	CIN	Input pins	-	6	_	pF
Diagonalitan	COUT	Output pins	-	9	-	pF
Pin capacitance	CRFIO	RF inout pins	-	9	-	pF
	CAI	Analog input pins	-	9	-	pF

•RF characteristics

Modulated Data Rate : 1.2kbps to 500kbps Modulation fomats : 2GFSK/2FSK Channel spacing : 60kHz to 1.6MHz

The measurement point is at antenna end specified in the recommended circuits.

[RF Frequency]

Item	Condition	Min	Тур	Max	Unit
RF frequency	LNA_P, PA_OUT pins	750	-	960	MHz

(Note)

- 1)Frequency range can be adjusted from 750MHz to 960MHz by changing external components parameters.
- 2)If channel frequency is similar frequency range of Integral multiple of the master clock, it may not be able to use this mode. Please refer to the "channel frequency setting" section for detail.

[TX Characteristics]

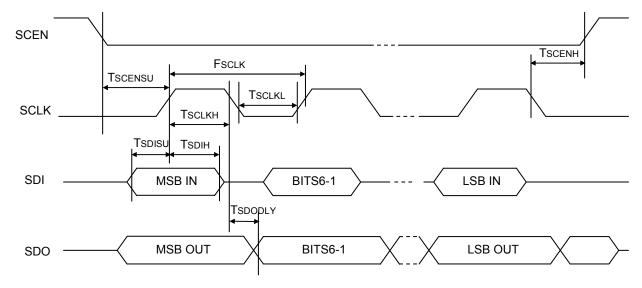
Item	Condition	Min	Тур	Max	Unit
	20mW(13dBm) mode	9	13	15	dBm
TX power	10mW(10dBm) mode	6	10	12	dBm
	1mW(0dBm) mode	-4	0	4	dBm
Frequency deviation fine tuning range [Fdev] (*1)		0.025	-	400	kHz
Spurious emission level(10mW mode)	The sencod order harmonic	-	-35	-30	dBm
	The third order harmonic	_	-35	-30	dBm

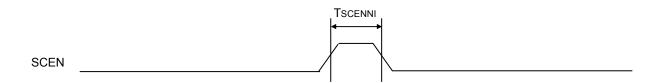
^{*1.} Depending on the frequency, max.frequency may be changed.

[RX Characteristics]

Item	Condition	Min	Тур	Max	Unit
Minimum RX sensitity	32.768kbps mode	-	-108	_	dBm
BER<0.1%	100kbps mode	-	-106	-100	dBm
Maximum RX input level	BER<0.1%	0	_	_	dBm
Minimum energy detection level (ED value)		-	-107	-100	dBm
Energy detection range	Dynamic range	60	70	-	dB
Energy detection accuracy		-6	-	+6	dB
Secondary emission level	Local frequency	-	-63	-57	dBm
	Frequency over 1000MHz	-	-57	-47	dBm

•RC oscillation circuits characteristics

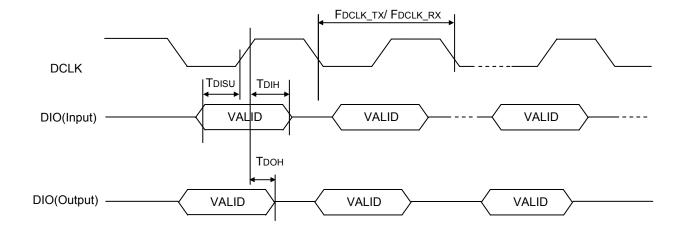

ML7406 has on-chip low speed RC clock generator. For details, please refer to "LSI state transition control/SLEEP setting" section.


Item	Symbol	Condition	Min	Тур	Max	Unit
RCOSC oscillation frequency	FRCOSC		-	44	-	kHz

•SPI interface characteristics

Item	Symbol	Condition	Min	Тур	Max	Unit
SCLK clock frequency	FSCLK		0.032	2	16	MHz
SCEN input setup time	TSCENSU		30	-	-	ns
SCEN input hold time	TSCENH		30	-	-	ns
SCLK high pulse width	TSCLKH	Load	28	-	-	ns
SCLK low pulse width	TSCLKL	capacitance	28	-	-	ns
SDI input setup time	TSDISU	CL=20pF	5	-	-	ns
SDI input hold time	TSDIH		15	-	-	ns
SCEN invert period	TSCENNI		200	-	-	ns
SDO output delay time	TSDODLY		-	-	22	ns

(Note) All measurement condition for the timings are VDDIO * 20% level and VDDIO * 80% level.


•DIO iInterface characteristics

Item	Symbol	Condition	Min	Тур	Max	Unit
DIO input setup time	TDISU		1	-	-	μsec
DIO input hold time	TDIH		0	-	-	ns
DIO output hold time	TDOH		20	-	-	ns
DCLK frequency accuracy (*1) (TX)	FDCLK_TX	Load capacitance CL=20pF	-clock frequency deviation	-	+clock frequency deviation	kHz
DCLK frequency accuracy (*2) (RX)	FDCLK_RX	·	-30	-	+30	%
DCLK output duty cycle (TX)	DDCLK_TX		45	-	55	%
DCLKoutput duty cycle (RX)	DDCLK_RX		30	-	70	%

^{*1} If there is no decimal point generated in the TX data rate setting caluclation, (see [TX_RATE_H: B1 0x02]), master clock frequency deviation is max.and min.of TX DCLK frequency.

(Note)

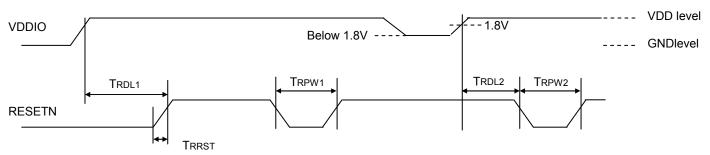
All timing measurement conditions are VDDIO * 20% and VDDIO * 80%.

^{*2} Max.and min.of RX DCLK frequency indicates jitter of recovered clock from RX signal upon synchronization.

Power-on characteristics

Item	Symbol	Condition	Min	Тур	Max	Unit
Power-on stable time	TPWON	Power on state (all power pins)	-	-	5	ms

(Note)


All timing measurement conditions are VDDIO * 20% and VDDIO * 80%.

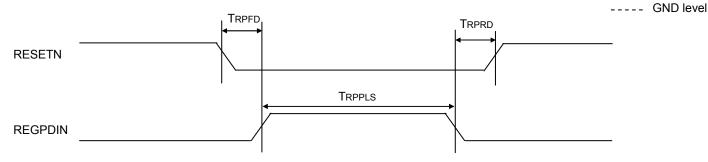
• Reset characteristics

Item	Symbol	Condition	Min	Тур	Max	Unit
RESETN release delay time (power on period)	TRDL1	All power pins After Power On	150	-	-	ms
RESETN pulse period (start-up from VDDIO=0V)	TRPW1		200	-	-	ns
RESETN pulse period 2(*1) (start-up from VDDIO≠0V)	TRPW2	After VDDIO>1.8V	150	-	-	ms
RESETN input delay time	TRDL2		1	-	-	μs
RESETN rising edge delay time	TRRST		-	-	1	ms

(Note) $\text{All timing measurement conditions are VDDIO}*20\% \ level \ and \ VDDIO}*80\% \ level.$

(*1) When starting from VDDIO≠0V, a pulse must be sent to VRESETN after DDIO exceeds 1.8V.

ML7406


•Deep Sleep mode characteristics

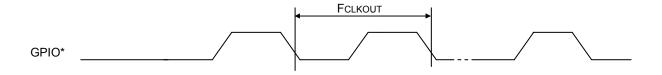
Item	Symbol	Condition	Min	Тур	Max	Unit
REGPDIN rising edge delay time	TRPFD	VDDIO="H"	0	-	-	μs
REGPDIN assert time	TRPPLS	VDDIO="H"	1.2	-	-	ms
REGPDIN release delay time	TRPRD	VDDIO="H"	1.5	-	-	ms

(Note)

All timing measurement conditions are VDDIO \times 20% and VDDIO \times 80%.

VDDIO VDDIO

•Clock output characteristics


ML7406 has clock output function. Clock output can be controlled by DMON_SET([MON_CTRL: B0 0x4D(3-0)]) and [GPIOn_CTRL: B0 0x4E-0x51] registers (n=0 to 3). Upon reset, clock is output through GPIO1 pin.

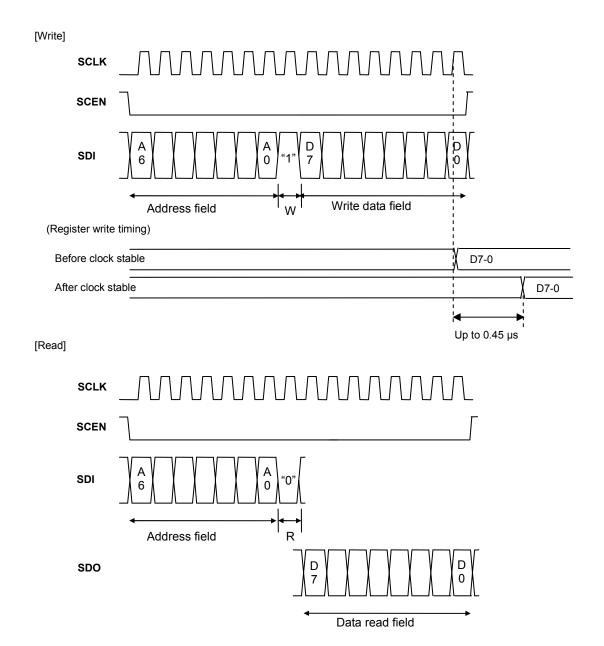
Item	Symbol	Condition		Min	Тур	Max	Unit
Clock output frequency	FCLKOUT			0.0064	3.33	26	MHz
		Load capacitance	8.66MHz	33	-	67	%
Clock output duty cycle (*1)	DCLKOUT	CL=20pF	All conditions except above	48	50	52	%

^{*1} Duty cycle is High:Low = 1:2, only when 8.66MHz is used. Please refer to [CLK_OUT: B1 0x01] register.

(Note)

All timing measurement conditions are VDDIO × 20% and VDDIO × 80%.

■Functional Description


Host Interface

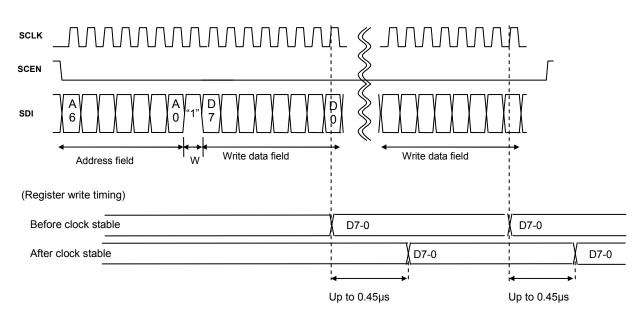
OSerial Peripheral Interface (SPI)

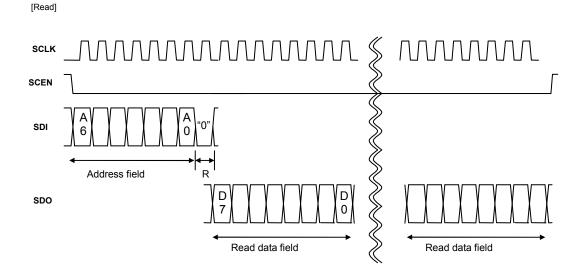
ML7406 has a SPI, which supports slave mode. Host MCU can read/write to the ML7406 registers and on-chip FIFO using MCU clock. Single access mode and burst access mode are also supported.

[Single access mode timing chart]

In write operation, data will be stored into internal register at rising edge of clock which is capturing D0 dat. During write operation, if setting SCEN line to "H", the data will not be stored into register. For more details of SCEN invert perios, please refer to the "SPI interface characteristics". After the internal clock is stabilized, the data will be written into the register in synchronization with the internal clock.

[Burst access mode timing chart]


By maintaining SCEN line as "L", Burst access mode will be active. By setting SCEN line to "H", exiting from the burst access mode. During burst access mode, address will be automatically incremented.


When SCEN line becomes "H" before Clock for D0 is input, data transaction will be aborted.

(Note)

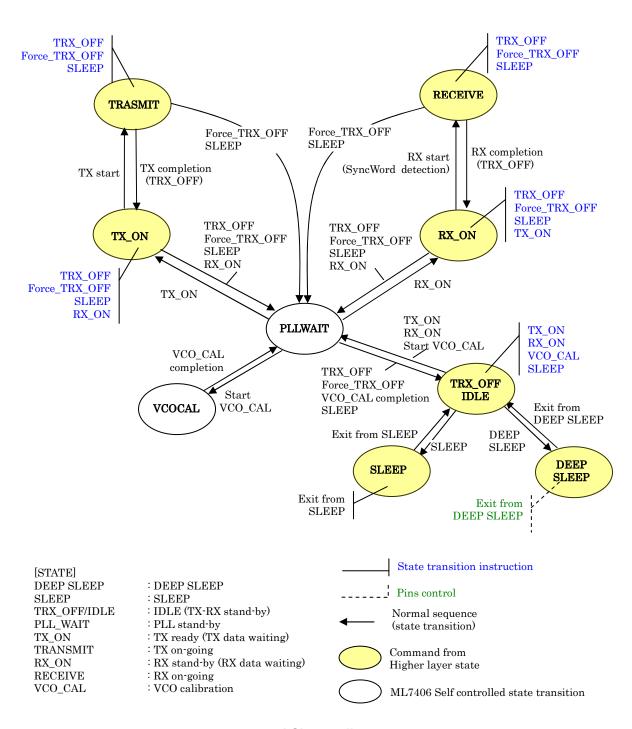
If destination is [WR_TX_FIFO: B0 0x7C], [RD_FIFO: B0 0x7F], address will not be incremented. And continuous FIFO access is possible.

[Write]

•LSI state transition control

oLSI state transition instruction

State can be controlled from MCU by setting registers below.


State transition command	Instruction
TX_ON	SET_TRX ([RF_STATUS: B0 0x0B(3-0)]) = 0b1001
RX_ON	SET_TRX ([RF_STATUS: B0 0x0B(3-0)]) = 0b0110
TRX_OFF	SET_TRX ([RF_STATUS: B0 0x0B(3-0)]) = 0b1000
Force_TRX_OFF	SET_TRX ([RF_STATUS: B0 0x0B(3-0)]) = 0b0011
SLEEP	SLEEP_EN([SLEEP/WU_SET: B0 0x2D(0)]) = 0b1
VCO_CAL	VCO_CA_LSTART([VCO_CAL_START: B0 0x6F(0)])= 0b1

State can be changed without command from MCU. If one of the following condition is met, state is changed automatically according to the following table. In order to enable these functions, the following registers must be programmed.

Function	Control bit name
Automatic TXON after FIFO write completion (AUTO_TX)	AUTO_TX_EN([RF_STATUS_CTRL: B0 0x0A(4)])
Automatic TXON during FIFO wrtie (FAST_TX)	FAST_TX_EN([RF_STATUS_CTRL: B0 0x0A(5)])
RF state setting after packet transmission completion	TXDONE_MODE([RF_STATUS_CTRL: B0 0x0A(1-0)])
RF state setting after packet reception completion	RXDONE_MODE([RF_STATUS_CTRL: B0 0x0A(3-2)])
Automatic RX_ON/TX_ON by Wake-up time	WAKEUP_MODE([SLEEP/WU_SET:B0 0x2D(6)]) WAKEUP_EN([SLEEP/WU_SET:B0 0x2D(4)])
Automatic VCO calibration after exit from SLEEP	AUTO_VCOCAL_EN([VCO_CAL_START: B0 0x6F(4)])
Automatic SLEEP by Timer	WU_DURATION_EN([SLEEP/WU_SET: B0 0x2D(5)])
Automatic SLEEP by high speed carrier checking mode	FAST_DET_MODE_EN([CCA_CTRL:B0 0x39(3)])
Force_TRX_OFF after PLL unlock detection during TX	PLL_LD_EN([PLL_LOCK_DETECT: B1 0x0B(7)])

OState Diagram

Each state transition control is decribed in the follwing state diagram.

LSI state diagram

(Note)

The following state transition is inhibited; DEEP SLEEP \rightarrow any state \rightarrow SLEEP

oSLEEP setting

DEEP_Sleep mode: Powers for all blocks except IO pins are turned off.

Sleep mode: Main regulator and 26MHz oscillation circuits are tured off. But sub-regulator is turned-on.

The following registers can be programmed to control SLEEP state.

Function	Control bit name
Power control	PDN_EN([SLEEP/WU_SET: B0 0x2D(1)])
Wake-up setting	WAKEUP_EN([SLEEP/WU_SET: B0 0x2D(4)])
Wake-up timer clock source setting	WUT_CLK_SOURCE([SLEEP/WU_SET: B0 0x2D(2)])
Internal RC oscillator control	RC32K_EN ([CLK_SET2: B0 0x03(3)])

Setting method and internal state for DEEP_SLEEP and various SLEEP modes are as follows:

SLEEP mode	Setting method	main regulator	Sub regulator	26MHz oscillator	RC oscilator	Low clock timer	FIFO
DEEP_SLEEP	RESETN pin="L" REGPDIN pin="H"	OFF	OFF	OFF	OFF	OFF	OFF
SLEEP1	not supported	-	-	-	-	-	-
SLEEP2	[SLEEP/WU_SET: B0 0x2D(4-0)] = 0b0_1001 (*2) [CLK_SET2: B0 0x03(3)] = 0b0 (default)	OFF	ON	OFF	OFF(*1)	OFF	ON
SLEEP3	[SLEEP/WU_SET: B0 0x2D(4-0)] = 0b1_1001 (*2) [CLK_SET2: B0 0x03(3)] = 0b0 (default)	OFF	ON	OFF	OFF	ON	ON
SLEEP4	[SLEEP/WU_SET: B0 0x2D(4-0)] = 0b1_1101 (*2) [CLK_SET2: B0 0x03(3)] = 0b1	OFF	ON	OFF	ON	ON	ON

Contents of registers are not kept during DEEP_SLEEP. Contents of registers are kept during SLEEP2, SLEEP3, SLEEP4.

^(*1) Low speed clock is supplied from EXT_CLK pin. (*2) Please set proper value to [SLEEP/WU_SET: B0 0x2D(3)].

ONotes to set RF state

ML7406 is able to change the internal RF state transition autonomously (without commands from MCU) as well as RF state change commands from MCU. (please refer to "LSI state transition instruction"). If both timing of operation (autonomous state and state change from MCU command) overlapped, unintentional RF state may occur. Timing of autonomous state RF change is described in the following table.

Care must be taken not to overlap the conditions.

Function	RF state change (before→after)	RF state transition timing (not from Host MCU command)	Recommended process	
Automatic TX	TRX_OFF/RX_ON →TX_ON	After TX data transfer completion interrut occurs, { value [TX_RATE_H/L: B1 0x02/03)] * 2 / 26}[µs] period.		
FAST_TX mode		When FIFO write access exceed trigger level +1, { value [RX_RATE1_H/L:B1 0x04/05] * 5 / 26}[µs] period.	Write access to [RF_STATUS:B0	
RF state setting after TX completion	TX_ON→TRX_OFF TX_ON→RX_ON TX_ON→SLEEP	After TX completion interrupt (INT[16] group3), { value [TX_RATE_H/L:B1 0x02/03] * 2 / 26} [µs] period	0x0B] is possible after RF state transition completion interrupt (INT[3] group1), or move to the	
RF state setting after RX completion	RX_ON→TRX_OFF RX_ON→TX_ON RX_ON→SLEEP	After data RX completion interrupt (INT[8] group2, { value [RX_RATE1_H/L:B1 0x04/05] * 2 / 26}[µs] period	state defined by GET_TRX ([RF_STATUS:B0 0x0B(7-4)]).	
Wake-up timer	SLEEP→TX_ON	After wake-up timer completion interrupt (INT[6] group1), 1 clock cycle period defined by		
	SLEEP→RX_ON	WUT_CLK_SET[3:0] ([WUT_CLK_SET:B0 0x2E (3-0)]).		
	SLEEP→VCO_CAL →TX_ON	After wake-up timer completion interrupt (INT[6]: group1), before VCO calibration completion	Write access to [RF_STATUS:B0 0x0B] and BANK2 is possible	
	SLEEP→VCO_CAL →RX_ON	interrupt (INT[1] group1).	after VCO calibration completion interrupt (INY[1] group1).	
Continuous operation timer	TX_ON→SLEEP	After continuous operation timer completion, 1 clock cycle period defined by WUT_CLK_SET[3:0]	Write access to [RF_STATUS:B0 0x0B] is possible after RF state	
	RX_ON→SLEEP	([WUT_CLK_SET:B0 0x2E (3-0)]).	transition completion interrupt (INT[3] group1), or move to the	
High speed carrier checking	RX_ON→SLEEP	After CCA completion interrupt, duration 6.3[µs].	state defined by GET_TRX ([RF_STATUS:B0 0x0B(7-4)]).	
PLL unlock detection	TX_ON→TRX_OFF	After PLL unlock detection interrupt (INT[2] group1) occurs, duration 147[µs].	Write access to [RF_STATUS:B0 0x0B] is possible 147µs after PLL unlock interrupt (INT[2] group1) detected.	

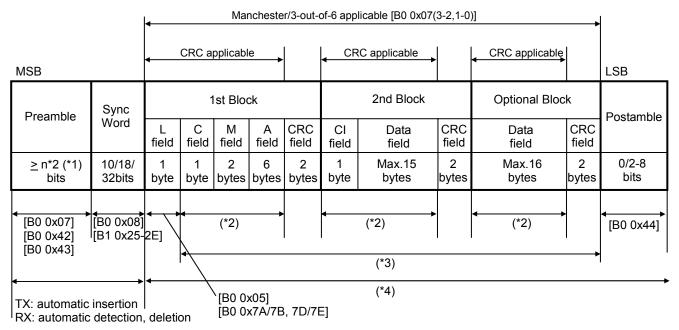
Packet Handling Function

Packet format

ML7406 supports Wireless M-BUS frame FormatA/B, and Format C which is non Wireless M-BUS universal format. The following packet handling are supported in FIFO mode or DIO mode

1) Preamble and SyncWord automatic insertion (TX) --- DIO/FIFO mode
2) Preamble and SyncWord automatic detection (RX) --- DIO/FIFO mode
3) Preamble and SyncWord automatic deletion (RX) --- DIO/FIFO mode
4) CRC data insertion (TX) --- FIFO mode
5) CRC check and error notification (RX) --- DIO/FIFO mode

The following table shws control bits relative with the Packet format function.

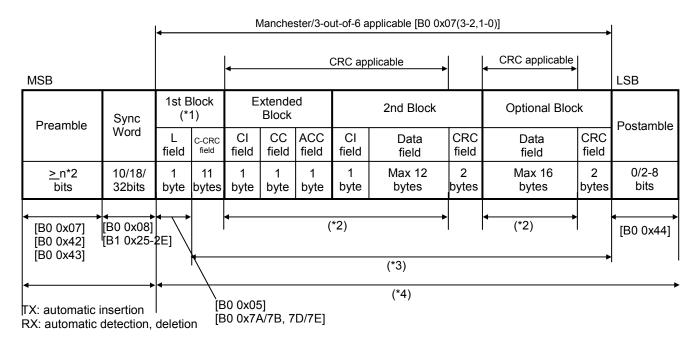

Function	Control bit name
Packet formatsetting	PKT_FORMAT[1:0] ([PKT_CTRL1: B0 0x04(1-0)])
IEEE 802.15.4g setting	IEEE802_15_4G_EN ([PKT_CTRL1: B0 0x04(2)])
RX extended link layer mode disable	RX_EXTPKT_OFF ([PKT_CTRL1: B0 0x04(3)])
Data area bit order setting	DAT_LF_EN ([PKT_CTRL1: B0 0x04(4)])
Length area bit order setting	LEN_LF_EN ([PKT_CTRL1: B0 0x04(5)])
Extended link layer mode setting	EXT_PKT_MODE[1:0] ([PKT_CTRL1: B0 0x04(7-6)])
Length field setting	LENGTH_MODE ([PKT_CTRL2: B0 0x05(0)])

(1) Format A (Wireless M-BUS)

By setting PKT_FORMAT[1:0] ([PKT_CTRL1: B0 0x04(1-0)])=0b00, Wireless M-BUS Format A is selected.

Format A consists of 1st Block, 2nd Block and Optional Block(s). Each block has 2 bytes of CRC. "L-field" (1st byte of 1st Block) indicates packet length, which includes subsequenct user data bytes from "C-field". However, CRC bytes and postamble are excluded. Depending on "L-field" value, 2nd Block and Optional Block(s) are added.

The following [] indicates register address [bank #, address].


- *1: Each mode has different minimum value of n.
- *2: Indicates TX FIFO data storage area size.
- *3: Indicates RX FIFO data storage area size.
- *4: When RXDIO CTRL[1:0] ([DIO SET: B0 0x0C(7-6)])=0b10, indicates DCLK/DIO output area.

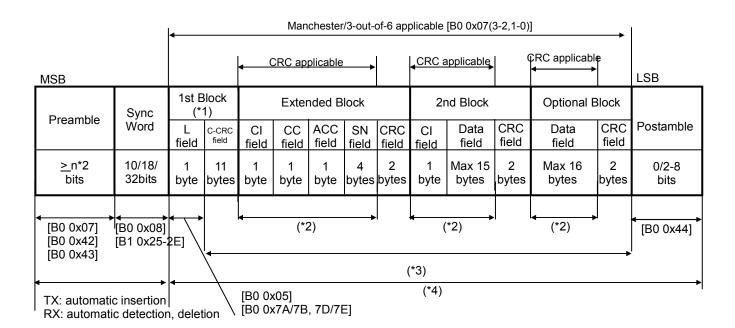
Extended Link Layer Format

If "CI-field" (1st byte of 2nd Block)=0x8C or 0x8D, Extended Link Layer is applied. The packet format is as follows:

(a) CI-field = 0x8C

For TX, if 2 bytes extention format is used, set EXT_PKT_MODE[1:0] ([PKT_CTRL1: B0 0x04(7-6)])=0b01. For RX, if RX_EXTPKT_OFF([PKT_CTRL1: B0 0x04(3)])=0b0, ML7406 recognizes "CI-field" and RX operation is processed.

^{*1: 1}st Block is identical to normal Format A..


^{*2:} Indicates TX FIFO data storage area size.

^{*3:} Indicates RX FIFO data storage area size.

^{*4:} When RXDIO_CTRL[1:0] ([DIO_SET: B0 0x0C(7-6)])=0b10, indicating DCLK/DIO output area.

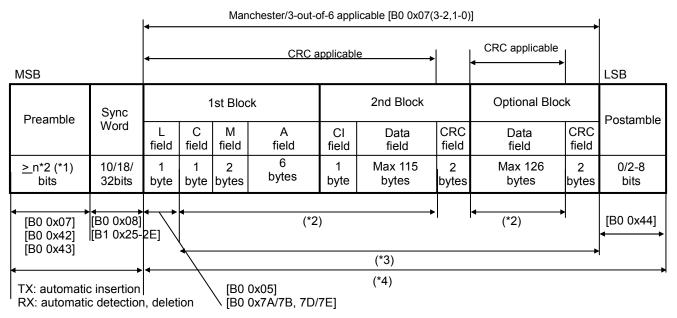
(b) CI-field = 0x8D

For TX, if 8 bytes extention format is used, set EXT_PKT_MODE[1:0] ([PKT_CTRL1: B0 0x04(7-6)])=0b10. For RX, if RX_EXTPKT_OFF([PKT_CTRL1: B0 0x04(3)])=0b0, ML7406 recognizes "CI-field" and RX operation is processed.

^{*1: 1&}lt;sup>st</sup> Block is identical to normal Format A..

^{*2:} Indicating TX FIFO data storage area size.

^{*3:} Indicating RX FIFO data storage area size.


^{*4:} When RXDIO_CTRL[1:0] ([DIO_SET: B0 0x0C(7-6)])=0b10, indicating DCLK/DIO output area.

(2) Format B (Wireless M-BUS)

By setting PKT_FORMAT([PKT_CTRL1: B0 0x04(1-0)])=0b01, Wireless M-BUS Format B is selected.

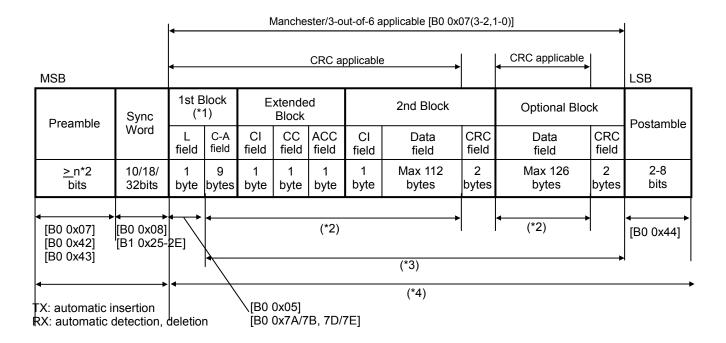
Format B consists of 1st Block, 2nd Block or Optional Block. Each block after 2nd Block has 2 bytes of CRC. "L-field" indicates packet length, which includes subsequent user data bytes from "C-field". However, unlike Format A, CRC bytes are included (Pastamble are excludedd). Depending on "L-field" value, 2nd Block and Optional Block(s) are added.

The following [] indicates register address [bank #, address].

^{*1:} Each mode has different minimum value of n.

^{*2:} Indicates TX FIFO data storage area size.

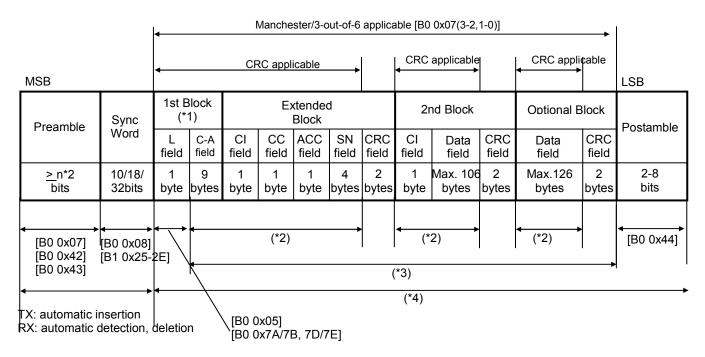
^{*3:} Indicates RX FIFO data storage area size.


^{*4:} When RXDIO_CTRL[1:0] ([DIO_SET: B0 0x0C(7-6)])=0b10, indicating DCLK/DIO output area.

Extended Link Layer Format

If "CI-field" (1st byte of 2^{nd} Block) = 0x8C or 0x8D, Extended Link Layer is applied. The packet format is as follows:

(a) CI-field = 0x8C


For TX, if 2bytes extention format is used, set EXT_PKT_MODE[1:0] ([PKT_CTRL1: B0 0x04(7-6)])=0b01. For RX, if RX_EXTPKT_OFF([PKT_CTRL1: B0 0x04(3)])=0b0, ML7406 recognizes "CI-field" and RX operation is processed.

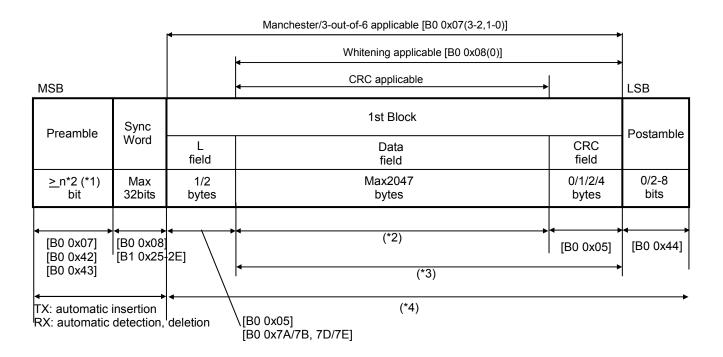
- *1: 1st Block is identical to normal Format B..
- *2: Indicating TX FIFO data storage area size.
- *3: Indicating RX FIFO data storage area size.
- *4: When RXDIO_CTRL[1:0] ([DIO_SET: B0 0x0C(7-6)])=0b10, indicating DCLK/DIO output area.

(b) CI-field = 0x8D

For TX, if 8 bytes extention format is used, set EXT_PKT_MODE[1:0]([PKT_CTRL1: B0 0x04(7-6)])=0b10. For RX, if RX_EXTPKT_OFF([PKT_CTRL1: B0 0x04(3)])=0b0, ML7406 recognizes "CI-field" and RX operation is processed.

^{*1: 1}st Block is identical to normal Format B..

^{*2:} Indicating TX FIFO data storage area size.


^{*3:} Indicating RX FIFO data storage area size.

^{*4:} When RXDIO CTRL[1:0] ([DIO SET: B0 0x0C(7-6)])=0b10, indicating DCLK/DIO output area.

(3) Format C (non Wireless M-BUS, general purpose format)

By setting PKT_FORMAT([PKT_CTRL1: B0 0x04(1-0)])=0b10, Format C, which is non Wireless M-BUS format, is selected. Format C consists of 1^{st} Block only, which has 2 bytes of CRC. "L-field" indicates packet length, which includes subsequent user data bytes, including CRC bytes. The length of "L-field" is defined by LENGTH_MODE([PKT_CTRL2:B0 0x5(0]). Data Whitening function is supported.

The following [] indicates register address [bank #, address].

^{*1} Preamble length (n) is programmable by [TXPR LEN H/L: B0 0x42/43] registers.

^{*2} indicating TX FIFO data strorage area size.

^{*3} Indicating RX FIFO data storage area size.

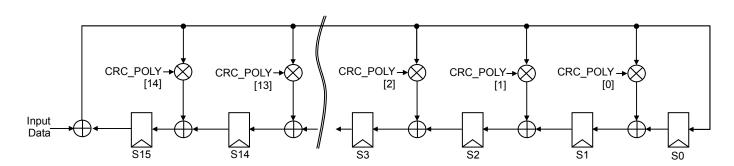
^{*4} When RXDIO_CTRL ([DIO_SET: B0 0x0C(7-6)])=0b10, indicating DCLK/DIO output area.

oCRC function

MSB order.

ML7406 has CRC32,CRC16 and CRC8 function. CRC is calculated and appended to TX data. CRC is checked for RX data. The following modes are used for automatic CRC function.

•FIFO mode: RXDIO_CTRL ([DIO_SET: B0 0x0C(7-6)]) = 0b00 •DIO mode: RXDIO CTRL ([DIO SET: B0 0x0C(7-6)]) = 0b11


Function	Control bit name / Register
TX CRC setting	TX_CRC_EN([PKT_CTRL2: B0 0x05(2)])
RX CRC setting	RX_CRC_EN([PKT_CTRL2: B0 0x05(3)])
CRC length setting	CRC_LEN([PKT_CTRL2: B0 0x05(5-4)])
CRC complement value OFF setting	CRC_COMP_OFF([PKT_CTRL2: B0 0x05(6)])
CRC polynomial setting	[CRC_POLY3/2/1/0: B1 0x16/17/18/19] registers
CRC error status	[CRC_ERR_H/M/L: B0 0x13/14/15] registers

Any CRC polynomials for CRC32/CRC16/CRC8 can be specified. Reset value is as follows:

CRC16 polynomial =
$$x^{16} + x^{13} + x^{12} + x^{11} + x^{10} + x^8 + x^6 + x^5 + x^2 + 1$$
 (reset value)

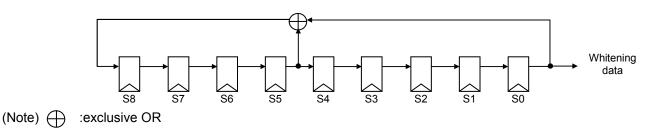
(Note) CRC result data can be inverted by CRC complement value OFF setting,.

CRC data will be generated by the following circuits. By programming [CRC_POLY3/2/1/0] registers, any CRC polynomials can be supported. Generated CRC will be transfer from the left most bit (S15). If data length is shorter than CRC length (3 bytes of CRC32 only), data "0"s will be added for CRC calculation. CRC check result is stored in [CRC_ERR_H/M/L] registers. Unlike Format C, Format A/B can include multiple CRC fields in one packet. For multiple CRCs check results, CRC value closest to L-field will be stored in CRC_ERR[0] ([CRC_ERR_L:B0 0x15(0)]). Subsequent bit will be stored in CRC_ERR from

(Note) \bigoplus :exclusive OR

CRC polynomial circuits

General CRC polynomial can be programmed by below [CRC_POLY3/2/1/0] register setting. CRC length can be set by CRC_LEN.


CPC naturacial		[CRC_POLY3/2/1/0]			
1	CRC polynomial		(B1 0x17)	(B1 0x18)	(B1 0x19)
CRC8	$x^8 + x^2 + x + 1$	0x00	0x00	0x00	0x03
	$x^{16} + x^{12} + x^5 + 1$	0x00	0x00	0x08	0x10
CRC16	$x^{16} + x^{15} + x^2 + 1$	0x00	0x00	0x40	0x02
	$x^{16} + x^{13} + x^{12} + x^{11} + x^{10} + x^8 + x^6 + x^5 + x^2 + 1$	0x00	0x00	0x1E	0xB2
CRC32	$\begin{bmatrix} x^{32} + x^{26} + x^{23} + x^{22} + x^{16} + x^{12} + x^{11} + x^{10} + x^{8} + x^{7} + x^{5} + x^{4} + x^{2} + x + 1 \end{bmatrix}$	0x02	0x60	0x8E	0xDB

OData whitening function (non Wireless M-BUS standard)

ML7406 supports Data whitening function. In packet format A/B, subsequent data followed by C-field can be processed data whitening. In packet format C, data Whitening is applied from data field. Data generated by the following 9 bit pseudo random sequence (PN9) will be "XOR" with TX data (encoded data if Manchester or 3-out-of 6 coding is selected) before transmission. Intialization value of the PN9 generation shift register can be defined by [WHT_INIT_H/L: B1 0x64/65] registers. PN9 polynomial can be programmed with [WHT_CFG: B1 0x66] register.

Function	Control bit name
Data Whiteing setting enable	WHT_SET ([DATA_SET2: B0 0x08(0)])
Data Whiteing initiazation value	WHT_INIT[8:0] ([WHT_INIT_H/L: B1 0x64(0)/65(7-0)])
Whitening polynomia	WHT_CFG[7:0] ([WHT_CFG: B1 0x66(7-0)])

In order to make feedback from S1 register, setting 0b1 to WHT_CFG0 ([WHT_CFG: B1 0x66(0)]). Similally in order to make feedback from S2 register, setting 0b1 to WHT_CFG1 ([WHT_CFG: B1 0x66(1)]). Other bits of [WHT_CFG: B1 0x66] register has same function. Two or more bits can be also set to 0b1. Therefore any type of PN9 polinominal can be programmed.

Whitening data generation circuits

(generator polynomial: $x^9 + x^5 + 1$)

General PN9 polynomial can be defined by [WHT_CFG].

PN9 polynomial	WHT_CFG[7:0] [WHT_CFG: B1 0x66]
$x^9 + x^4 + 1$	0x08
$x^9 + x^5 + 1$	0x10

SyncWord detection function

ML7406 supports automatic SyncWord recognition function. By having two sets of SyncWord pattern storage area, it is possible to detect two different packet format (Format A/B) which are defined by Wireless M-Bus. (For details, please refer to Wireless M-BUS standard) Receiving packet format is indicated by SW_DET_RSLT([STM_STATE:B0 0x77(5)]). In Format C, it is possible to search for two SyncWords but detected result is not indicated.

1) TX

SyncWord pattern defined by SYNCWORD_SEL ([DATA_SET2: B0 0x08(4)]) will be selected. SyncWord length for TX is defined by SYNC_WORD_LEN[5:0] ([SYNC_WORD_LEN: B1 0x25(5-0)]). From high bit of each SyncWord pattern will be transmitted.

SYNCWORD_SEL	TX SyncWord pattern
0	SYNC_WORD1[31:0] ([SYNCWORD1_SET3/2/1/0: B1 0x27/28/29/2A])
1	SYNC_WORD2[31:0] ([SYNCWORD2_SET3/2/1/0: B1 0x2B/2C/2D/2E])

Example) SyncWord patten and SyncWord length

If the follwing registers are programmed, from higher bit of SYNC_WORD1[17:0] will be transmitted sequencially.

[SYNC WORD LEN: B1 0x25]=0x12

 $SYNCWORD_SEL([DATA_SET2: B0 0x08(4)]) = 0b0$

If the following registers are programmed, from higher bit of SYNC_WORD2[23:0] will be transmitted sequencially.

[SYNC_WORD_LEN: B1 0x25]=0x18

SYNCWORD SEL ([DATA SET2: B0.0x08(4)]) = 0b1

2) RX

By setting SYNCWORD_SEL and 2SW_DET_EN ([DATA_SET2: B0 0x08(4,3)]), One SyncWord pattern waiting or two SyncWord patterns waiting can be selected as follows: Packet format automatic detection is valid if 2SW_DET_EN=0b1 and Format A or Fromat B is selected by PKT_FORMAT[1:0] ([PKT_CTRL1:B0 0x04(1-0)]).

2SW_DET_ EN	SYNCWORD_ SEL	SyncWord pattern During Sync Detection	SyncWord Detection operation	Automatic packet format detection	Data process after SyncWord
0	0	SYNC_WORD1[31:0]	Waiting for 1 pattern	no	Process according to each Format setting
0	1	SYNC_WORD2[31:0]	Waiting for 1 pattern	no	Process according to each Format setting
1	-	SYNC_WORD1[31:0] SYNC_WORD2[31:0]	Waiting for 2 patterns	yes	[Format A or Format B setting] If matched with SYNC_WORD1, then process as Format A. If matched with SYNC_WORD2, then process as Format B. [Format C setting] Process as Format C

Length of SyncWord pattern can be defined by SYNC_WORD_LEN[5:0] ([SYNC_WORD_LEN: B1 0x25(5-0)]). In this case, SyncWord pattern defined by the length from low bit of SYNC_WORD1[31:0] or SYNC_WORD2[31:0] will be the pattern for checking.

Example) SyncWord length

If the following registers are set, 18 bit of SYNC_WORD1[17:0] or SYNC_WORD2[17:0] will be reference pattern for the SyncWord detection. Higher bits (bit31-18) are not checked.

[SYNC_WORD_LEN: B1 0x25]=0x12 [SYNC_WORD_EN: B1 0x26]=0x0F

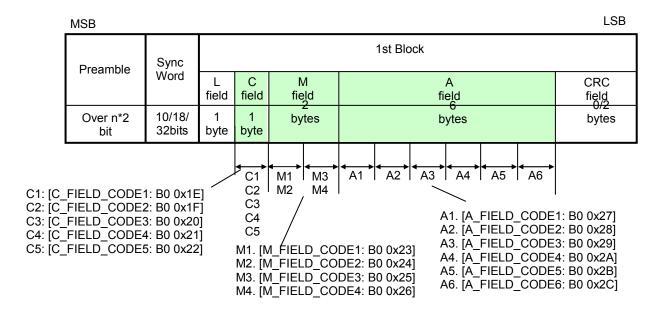
32bit SyncWord pattern can be controlled by enabling/disabling by each 8bit, when receiving SyncWord. The following table describes enable/disable control and SyncWord pattern.

[SYNC_WORD_EN]		SYNC_W	IC_WORD*		SyncWord detection operation
(B1 0x26)	[31:24]	[23:16]	[15:8]	[7:0]	Syneviora detection operation
0000					No SyncWord detection
0001		D.C.(*1)		ON	Only [7:0] are valid. Upon [7:0] detection, SyncWord detection.
0010	D.	C.	ON	D.C.	Only [15:8] are valid. Upon [7:0] detection, SyncWord detection.
0011	D.	C.	ON	ON	[15:0] are valid. Upon [7:0] detection, SyncWord detection.
0100	D.C.	ON	D.	C.	Only [23:16] are valid. Upon [7:0] detection, SyncWord detection.
0101	D.C.	ON	D.C.	ON	[23:16] and [7:0] are valid. Upon [7:0] detection, SyncWord detection.
0110	D.C.	ON	ON	D.C.	[23:8] are valid. Upon [7:0] detection, SyncWord detection.
0111	D.C.	ON	ON	ON	[23:0] are valid. Upon [7:0] detection, SyncWord detection.
1000	ON	D.C.			Only [31:24] are valid. Upon [7:0] detection, SyncWord detection.
1001	ON	D.0	C .	ON	[31:24] and [7:0] are valid. Upon [7:0] detection, SyncWord detection.
1010	ON	D.C.	ON	D.C.	[31:24] and [15:8] are valid. Upon [7:0] detection, SyncWord detection.
1011	ON	D.C.	ON	ON	[31:24] and [15:0] are valid. Upon [7:0] detection, SyncWord detection.
1100	ON	ON	D.C.		[31:16] are valid. Upon [7:0] detection, SyncWord detection.
1101	ON	ON	D.C.	ON	[31:16] and [7:0] are valid. Upon [7:0] detection, SyncWord detection.
1110	ON	ON	ON	D.C.	[31:8] are valid. Upon [7:0] detection, SyncWord detection.
1111	ON	ON	ON	ON	Whole [31:0] are valid. Upon [7:0] detection, SyncWord detection.

^{*1} D.C. stands for Don't Care.

^{*2} Preamble pattern can be added to the SyncWord detection conditions by RXPR_LEN[5:0]([SYNC_CONDITION1: B0 0x45(5-0)]).

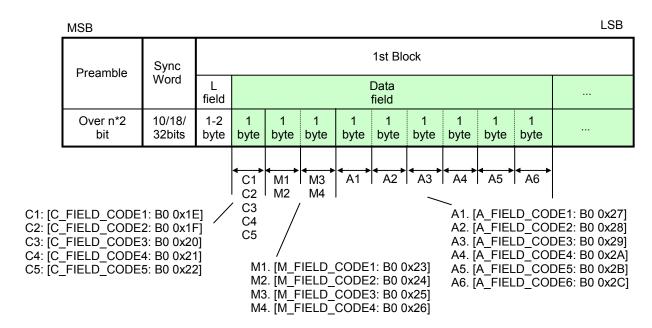
Field check function


ML7406 has the function of caparing the 9 bytes following L-field (Format A/B: start from C-field, Format C: start from Data-field) in a receiving packet. Based on comparison with the expected data, possible to generate interrupts (Field check function). Field check can be possible with the following register setting. When using this function, RXDIO_CTRL[1:0] ([DIO_SET:B0 0x0C(7-6)]) = 0b00 (FIFO mode) or 0b11 (data output mode 2) setting is required.

Function	Register
RX data process setting when Field check unmatched	[C_CHECK_CTRL: B0 0x1B(7)]
Field check interrupt setting	[C_CHECK_CTRL: B0 0x1B(6)]
C-field detection enable setting	[C_CHECK_CTRL: B0 0x1B(4-0)]
M-field detection enable setting	[M_CHECK_CTRL: B0 0x1C(3-0)]
A-field detection enable setting	[A_CHECK_CTRL: B0 0x1D(5-0)]
C-field code setting	[C_FIELD_CODE1: B0 0x1E]
	[C_FIELD_CODE2: B0 0x1F]
	[C_FIELD_CODE3: B0 0x20]
	[C_FIELD_CODE4: B0 0x21]
	[C_FIELD_CODE5: B0 0x22]
M-field code setting	[M_FIELD_CODE1: B0 0x23]
	[M_FIELD_CODE2: B0 0x24]
	[M_FIELD_CODE3: B0 0x25]
A 5 11 1 11	[M_FIELD_CODE4: B0 0x26]
A-field code setting	[A_FIELD_CODE1: B0 0x27]
	[A_FIELD_CODE2: B0 0x28]
	[A_FIELD_CODE3: B0 0x29]
	[A_FIELD_CODE4: B0 0x2A]
	[A_FIELD_CODE5: B0 0x2B]
	[A_FIELD_CODE6: B0 0x2C]

The following describes the relation between each comparison code and incoming RX data.

[Format A/B(Wireless M-Bus)]


Field check can be controlled by setting disabled/enabled for each comparison code (1 byte). If all specified Field data (C-field/M-field/A-field) are matched, Field checking matching will be notified. However, if C-field data and C_FIELD_CODE5 are matched, even if other Field data (M-field/A-field) are not matched, Field check result will be notified as "match".

Check Field	Comaprison Code	Conditions for match
C-field	C_FIELD_CODE1 or C_FIELD_CODE2 or C_FIELD_CODE3 or C_FIELD_CODE4 or C_FIELD_CODE5	If one of the 5 comparison code is matched
M-field 1 st byte	M_FIELD_CODE1 or M_FIELD_CODE2	If one of the 2 comparison code is matched.
M-field 2 nd byte	M_FIELD_CODE3 or M_FIELD_CODE4	If one of the 2 comparison code is matched.
A-field	A_FIELD_CODE1/2/3/4/5/6	If comparison codes are matched.

[Format C]

Field check can be controlled by setting disabled/enabled for each comarison code (1 byte). If all specified Field data (specified table below) are matched, Field checking matching will be notified. However, if 1st byte of Data field and C_FIELD_CODE5 are matched, even if other Field data(from 2nd byte of Data field to 9th byte of Data field) are not matched, Field check result will be notified as "match".

Check Field	Comparison Code	Conditions for match
Data-field 1 st byte	C_FIELD_CODE1 or C_FIELD_CODE2 or	If one of the 5 comparison code is matched
	C_FIELD_CODE3 or C_FIELD_CODE4 or	
	C_FIELD_CODE5	
Data-field 2 nd byte	M_FIELD_CODE1 or M_FIELD_CODE2	If one of the 2 comparison code is matched.
Data-field 3 rd byte	M_FIELD_CODE3 or M_FIELD_CODE4	If one of the 2 comparison code is matched.
Data-field 4 th byte	A_FIELD_CODE1	If comparison code is matched.
Data-field 5 th byte	A_FIELD_CODE2	If comparison code is matched.
Data-field 6 th byte	A_FIELD_CODE3	If comparison code is matched.
Data-field 7 th byte	A_FIELD_CODE4	If comparison code is matched.
Data-field 8 th byte	A_FIELD_CODE5	If comparison code is matched.
Data-field 9 th byte	A_FIELD_CODE6	If comparison code is matched.

- •Packet processing as a result of Field checking
 By setting CA_RXD_CLR ([C_CHECK_CTRL: B0 0x1B(7)])=0b1, if the result of Field check is unmatch, data packet will be aborted and wait for next packet data.
- •Storing number of unmatched packets
 Unmatched packets can be counted up to max. 2047 packets and result are stored in [ADDR_CHK_CTR_H: B1 0x62] and[ADDR_CHK_CTR_L: B1 0x63]. This count value can be cleared by STATE_CLR4 ([STATE_CLR: B0 0x16(4)]).

oFIFO control function

ML7406 has on-chip TX_FIFO(64Byte) and RX_FIFO(64Byte). As TX/RX_FIFO do not support multiple packets, packet should be processed one by one. If RX_FIFO keeps RX packet and next RX packet is received, RX_FIFO will be overwritten. It applies to TX_FIFO as well. However TX FIFO access error interrupt (INT[20] group3) will be generated. When receiving, RX data is stored in FIFO (byte by byte) and the host MCU will read RX data through SPI. When transmitting, host MCU write TX data to TX_FIFO through SPI and transmitting through RF.

Writing or reading to FIFO is through SPI with burst access. TX data is written to [WR_TX_FIFO: B0 0x7C] register. RX data is read from [RD_FIFO: B0 0x7F] register. Continuous access increments internal FIFO counter automatically. If FIFO access is suspended during write or read operation, address will be kept until the packet will be process again. Therefore, when resuming FIFO access, next data will be resumed from the suspended address.

FIFO control register are as follows:

Function	Register
TX FIFO Full level setting	[TXFIFO_THRH: B0 0x17]
TX FIFO Empty level setting	[TXFIFO_THRL: B0 0x18]
RX FIFO Full level setting	[RXFIFO_THRH: B0 0x19]
RX FIFO Empty level setting	[RXFIFO_THRL: B0 0x1A]
FIFO readout setting	[FIFO_SET: B0 0x78]
RX FIFO data usafe status indication	[RX_FIFO_LAST: B0 0x79]
TX packet Length setting	[TX_PKT_LEN_H/L: B0 0x7A/7B]
RX packet Length setting	[RX_PKT_LEN_H/L: B0 0x7D/7E]
TX FIFO	[WR_TX_FIFO: B0 0x7C]
FIFO read	[RD_FIFO: B0 0x7F]

TX – RX procedure using FIFO are as follows:

[TX]

- i) TX data L-field value is set to [TX_PKT_LEN_H: B0 0x7A], [TX_PKT_LEN_L: B0 0x7B] register. If Length is 1 byte, [TX_PKT_LEN_L] register will be transmitted. Length can be set to LENGTH_MODE([PKT_CTRL2: B0 0x05(0)]).
- ii) TX data is written to [WR_TX_FIFO:B0 0x7C] register.

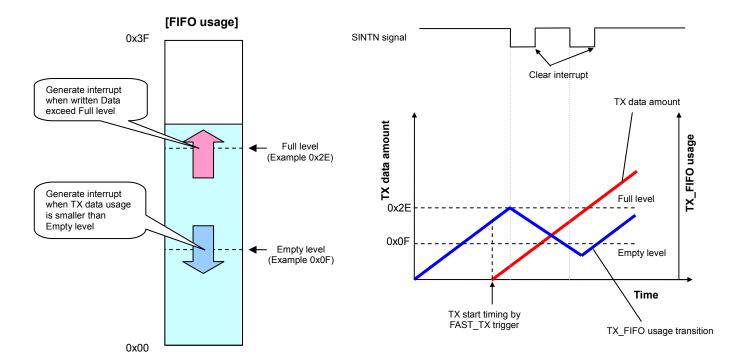
(Note)

- 1. If TX_FIFO write sequence is aborted during transmission, STATE_CLR0 [STATE_CLR:B0 0x16(0)] (TX FIFO pointer clear) must be issued. Otherwise data pointer is kept in the LSI and the next packet is not processed properly. For example, TX FIFO access error interrupt (INT[20] group3) is generated. This interrupt can be generated when the next packet data is writren to the TX_FIFO before transmitting previous packet data or TX_FIFO overrun (FIFO is written when no TX_FIFO space) or underrun (attempt to transmit when TX_FIFO is empty)
- 2. Depending on the packet format, TX data Length value is different.
 - Format A: Length includs data area excluding L-field and CRC data.
 - Format B: Length includes data area excluding L-field.
 - Format C: Length includes data area excluding L-field.

[RX]

- i) L-field (Length) is read from [RX_PKT_LEN_H: B0 0x7D], [RX_PKT_LEN_L: B0 0x7E] registers.
- ii) Reading RX data from RX_FIFO. When reading from RX_FIFO, set FIFO_R_SEL([FIFO_SET: B0 0x78(0)])= 0b0. If FIFO_R_SEL=0b1, TX_FIFO will be selected. Data usage value of RX_FIFO is indicated by [RX_FIFO_LAST: B0 0x79] register.

(Note)


- 1. If reading FIFO data is terminated before reading all data, STATE_CLR1 [STATE_CLR: B0 0x16(1)] (RX FIFO pointer clear) must be issued. Otherwise If RX_FIFO is not cleared, the pointer controlling FIFO data keeps the same status. Next RX data will not be processed in the FIFO properly.
 - For example, when RX_FIFO access error interrupt (INT[12] group2) is generated. This interrupt occurs when RX FIFO overrun (data received when no space in RX FIFO) or underrun (reading empty RX FIFO).
- 2. If 1 packet data is kept in the RX FIFO, next RX data will be overwritten.

IF TX/RX pack is larger than FIFO size, FIFO access can be controlled by FIFO-Full trigger or FIFO-Empty trigger.

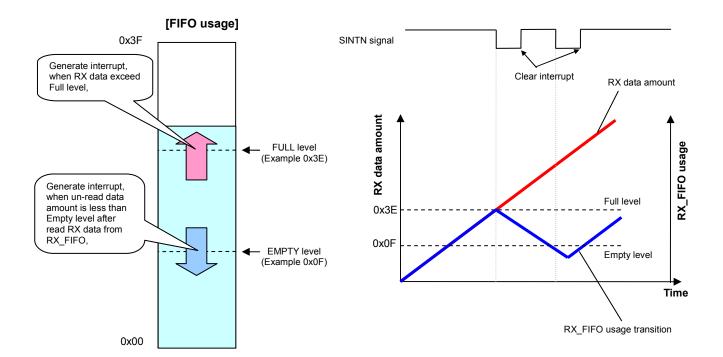
(1) TX FIFO usage notification function

This function is to notice TX_FIFO usage to the MCU using interrupt (SINTN). If TX_FIFO usage (un-transmitted data in TX_FIFO) exceed the Full level threshold set by [TXFIFO_THRH: B0 0x17] register, interrupt will generate as FIFO-full interrupt (INT[5] group1). If TX_FIFO usage is smaller than Empty level threshold set by [TXFIFO_THRL: B0 0x18] register, FIFO-Empty interrupt will generate as FIFO-Empty interrout (INT[4] grou1). Interrupt signal (SINTN) can be output from GPIO* or EXT_CLK pin.

For output setting, please refer to [GPIO1_CTRL: B0 0x4E], [GPIO1_CTRL: B0 0x4F], [GPIO2_CTRL: B0 0x50], [GPIO3_CTRL: B0 0x51], [EXTCLK_CTRL: B0 0x52] registers for output setting.

(Reference Sequence)

- 1. Set Full level threshold and Empy level threshold..Each threshold should set as TXFIFO_THRH[5:0] ([TXFIFO_THRH:B0 0x17(5-0)]) > TXFIFO_THRL[5:0] ([TXFIFO_THRL:B0 0x18(5-0)]). And enabling Full level threshold by TXFIFO_THRH_EN([TXFIFO_THRH:B0 0x17(7)=0b1.
- 2. Enabling FAST_TX mode by FAST_TX_EN([RF_STATUS_CTRL:B0 0x0A(5)])=0b1 and start writing TX data to the TX_FIFO[WR_TX_FIFO:B0 0x7C] until FIFO-Full interrupt (INT[5] group1) occurs.
- 3. After FIFO-Full interrupt is generated, Clear the interupt. Then disabling Full level threshold (TXFIFO_THRH_EN= 0b0) and enabling Empty level threshold (TXFIFO_THRL_EN([TXFIFO_THRL:B0 0x18(7)])=0b1).
- 4. After FIFO-Empty interrupt (INT[4] group1) is generated, Clear the interupt. Then disabling Empty level threshold (TXFIFO_THRL_EN=0b0) and enabling Full level threshold (TXFIFO_THRH_ EN=0b1). Then resume writing TX data to the TX_FIFO until next FIFO-Full interrupt occurs.
- 5. Repeat 3.-4. until completion of TX.


(Note)

When skip disabling threshold level at sequece 3. or 4., depending on TX data read (PHY block) and TX_FIFO write timing through SPI, in the middle of TX_FIFO writing, unwilling FIFO-Full interrupt or FIFO-Empty interrupt may occurs.

(2) RX FIFO usage notification function

This function is to notify RX_FIFO usage amount by using interrupt (SINTN) to the MCU. If RX_FIFO usage (un-read data in RX_FIFO) exceed Full level threshold defined by [RXFIFO_THRH: B0 0x19] register, interrupt will generate as FIFO-Full interrupt (INT[5] group1). After MCU read RX data from RX_FIFO, un-read amount become smaller than Empty level threshold defined by [RXFIFO_THRL: B0 0x1A] register, interrupt will generated as FIFO-Empty (INT[4] group1). Interrupt signal (SINTN) can be output from GPIO* or EXT_CLK.

For output setting, please refer to [GPIO1_CTRL: B0 0x4E], [GPIO1_CTRL: B0 0x4F], [GPIO2_CTRL: B0 0x50], [GPIO3_CTRL: B0 0x51], [EXTCLK_CTRL: B0 0x52] registers.

(Reference Sequence)

- 1. Set Full level threshold and Empy level threshold..Each threshold should set as RXFIFO_THRH[5:0] ([RXFIFO_THRH:B0 0x19(5-0)]) > RXFIFO_THRL[5:0] ([RXFIFO_THRL:B0 0x1A(5-0)]). And enabling Full level threshold by RXFIFO THRH EN([RXFIFO THRH:B0 0x19(7)=0b1.
- 2. After issuing RX ON, wait FIFO-Full interrupt (INT[5] group1) generation.
- 3. After FIFO-Full interrupt is generated, Clear the interupt. Then disabling Full level threshold (RXFIFO_THRH_EN= 0b0) and enabling Empty level threshold (RXFIFO_THRL_EN([RXFIFO_THRL:B0 0x1A(7)])=0b1). And start reading RX data from RX FIFO [RD FIFO:B0 0x7F].
- 4. After FIFO-Empty interrupt (INT[4] group1) is generated, Clear the interupt. Then disabling Empty level threshold (TXFIFO_THRL_EN=0b0) and enabling Full level threshold (TXFIFO_THRH_EN=0b1). Then resume writing TX data to the TX_FIFO until next FIFO-Full interrupt occurs.
- 5. Repeat 3.-4. until completion of RX data read out.

(Note)

When skip disabling threshold level at sequece 3. or 4., depending on RX data write (PHY block) and RX_FIFO read timing through SPI, in the middle of RX_FIFO reading, unwiilling FIFO-Full interrupt or FIFO-Empty interrupt may occurs.

oDIO function

Using GPIO0-3, EXT_CLK or SDI/SDO pins, TX/RX data can be input/output. Pins can be configured by [GPIO*_CTRL: B0 0x4E/0x4F/0x50/0x51], [EXTCLK_CTRL: B0 0x52] and [SPI/EXT_PA_CTRL: B0 0x53] registers. Data format for TX/RX are as follows:

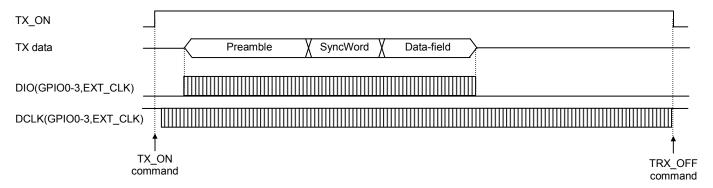
TX --- TX data (NRZ or Manchester/3-out-of-6coding) will be input.

RX --- pre-decoded RX data or decoded RX data will be output. (selectable by [DIO SET: B0 0x0C] register)

DIO function registers are as follows:

Function	Registers
DIO RX data output start setting	[DIO_SET: B0 0x0C(0)]
DIO RX completion setting	[DIO_SET: B0 0x0C(2)]
TX DIO mode setting	[DIO_SET: B0 0x0C(5-4)]
RX DIO mode setting	[DIO_SET: B0 0x0C(7-6)]

(1) In case of using GPIO*, EXT CLK pins

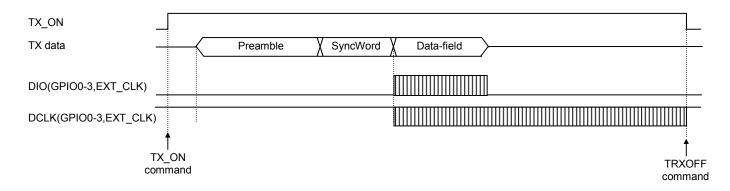

If GPIO0-3 or EXT_CLK pins are used as DCLK/DIO, DCLK/DIO should be controlled as follow. (below DIO/DCLK vertical line part indicate output or input period)

[TX]

i) Continuous input mode (from host)

Set TXDIO CTRL[1:0] ([DIO SET: B0 0x0C(5-4)]) =0b01.

After TX_ON(SET_TRX[3:0]([RF_STATUS: B0 0x0B(3-0)])=0x9), DCLK is output continuously. At falling edge of DCLK, TX data is input from DIO pin. TX data must be encoded data.

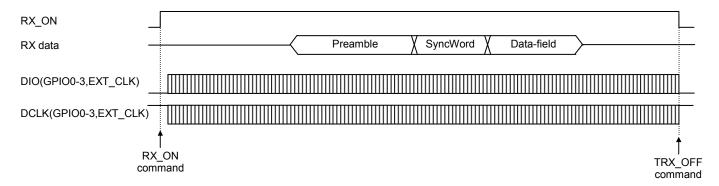


(Note) For details of timing, please refer to the "TX" in the "Timing Chart".

ii) Data input mode (from host)

Set TXDIO CTRL[1:0] ([DIO SET: B0 0x0C(5-4)]) =0b10.

After TX_ON, DCLK is output during data input period after SyncWord. TX data is input at falling edge of DCLK through DIO input. Encoded TX data must be transferred from the host. Preamble and SyncWordis generated automatically according to the registers setting.

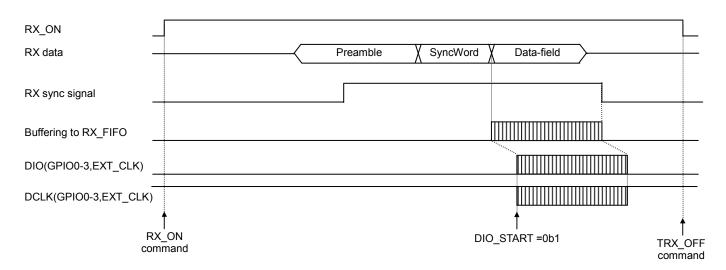

Preamble can be set by PB_PAT([DATA_SET1: B0 0x07(7)] and TXPR_LEN[15:0] ([TXPR_LEN_H/L: B0 0x42/43]). SyncWord can be set by SYNCWORD_SEL([DATA_SET1: B0 0x08(4)), SYNCWORD_LEN[5:0] ([SYNC_WORD_LEN: 1 0x25(5-0)]), SYNC_WORD_EN* ([SYNC_WORD_EN: B1 0x26(3-0)]), SYNC_WORD1[31:0] ([SYNCWORD1_SET3/2/1/0: B1 0x27/28/29/2A]), SYNC_WORD2[31:0] ([SYNCWORD2_SET3/2/1/0: B1 0x2B/2C/2D/2E]).

[RX]

i) Continuous output mode (to host)

Set RXDIO CTRL[1:0] ([DIO SET: B0 0x0C(7-6)])=0b01.

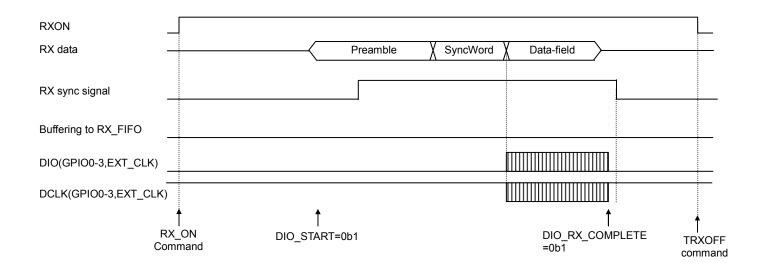
After RX_ON(SET_TRX[3:0] ([RF_STATUS: B0 0x0B(3-0)])=0x6), DCLK is output continuously. RX data (demodulated data) is output from DIO pin at falling edge of DCLK. RX data is not stored in RX_FIFO.



(Note) For details of timing, please refer to the "RX" in the "Timing Chart".

ii) Data output mode 1 (to host)

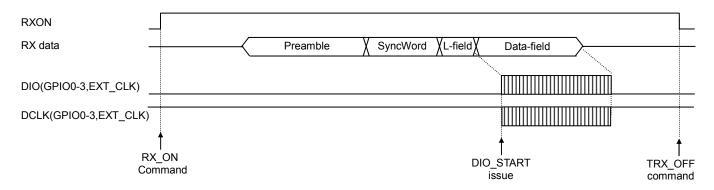
Set RXDIO CTRL[1:0] ([DIO SET: B0 0x0C(7-6)]) =0b10.


After SyncWord detection, RX data is buffered in RX_FIFO. RX data buffering will continue until RX sync signal (SYNC) becomes "L". By setting DIO_START ([DIO_SET: B0 0x0C(0)])=0b1, top data of buffered data will be output through DIO interface (DIO/DCLK). (RX data is output at falling edge of DCLK). However, if DIO_START setting is done after 64 byte timing, the top byte will be over written. If all buffered data is output until SYNC becomes "L", RX completion interrupt (INT[8] group 2) will be generated. After RX completion, ready to receive next packet.

(Note)

- RX data buffering in RX_FIFO is accessed byte by byte. DIO_START should be issued after 1 byte access time upon SyncWord detection.
- 2. This mode does not process L-field. Field checking function is not supported.

If DIO_START is issued before SyncWord detection, data is not buffered in RX_FIFO and RX data after SyncWord detection will be output at falling edge of DCLK . In order to complete RX before SYNC becomes "L", DIO RX completion setting (DIO_RX_COMPLETE([DIO_SET: B0 0x0C(2)]=0b1) is necessary. After DIO_RX_COMPLETE setting, ready to receive the next packet.



iii) Data output mode 2 (to host)

Set RXDIO CTRL[1:0] ([DIO SET: B0 0x0C(7-6)])=0b11.

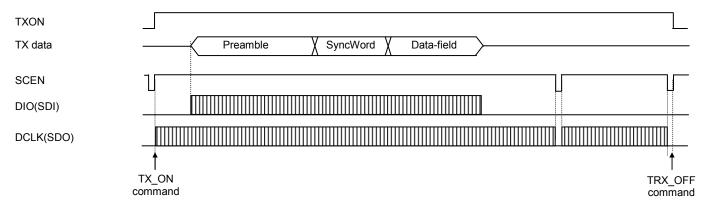
Only Data-field of RX data is buffered in RX_FIFO. RX data indicated by L-field is stored in RX_FIFO. By DIO_START([DIO_SET: B0 0x0C(0)])=0b1, top data of buffered data will be output through DIO interface (DIO/DCLK). (RX data is output at falling edge of DCLK).

However, if DIO_START setting is done after 64 byte timing, the top byte will be overwritten. If all data indicated by L-field is output, RX completion interrupt (INT[8] group2) will be generated. After RX completion, ready to receive next packet. Length information is stored in [RX_PKT_LEN_H/L: B0 0x7D/7E] registers. This mode support fileld check function.

(Note)

RX data buffering in RX_FIFO is byte by byte access. DIO_START should be issued after elapsed time from SyncWord detection to L-field length + over 1byte access time.

(2) In case of using SDI/SDO pin (sharing with SPI interface)

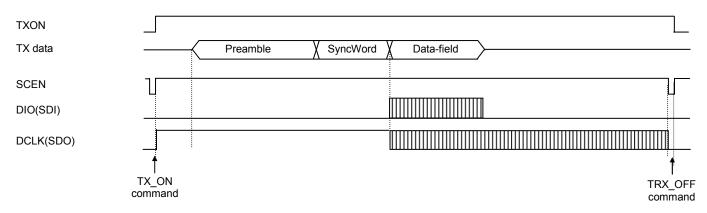

If SDI and SDO pins are used DCLK/DIO, DCLK/DIO is controlled as follow. (below DIO/DCLK vertical line part indicate output or input.) Both SDO_CFG and SDI_CFG ([SPI/EXT_PA_CTRL:B0 0x53 (5,4)]) should be set 0b1.

[TX]

i) Continuous input mode (from host)

Set TXDIO CTRL[1:0] ([DIO SET: B0 0x0C(5-4)])=0b01

After TX_ON(SET_TRX[3:0] ([RF_STATUS: B0 0x0B(3-0)])=0x9), during SCEN pin is "H", DCLK is output from SDO pin. TX data can be input from SDI pin at falling edge of DCLK. TX data must be encoded data. After TRX_OFF is issued (SET_TRX[3:0] ([RF_STATUS: B0 0x0B(3-0)])=0x8), input data from DIO pin are not valid. During DCLK output, if SCEN pin becomes "L", DCLK output will stop. (SPI access has priority)


(Note)

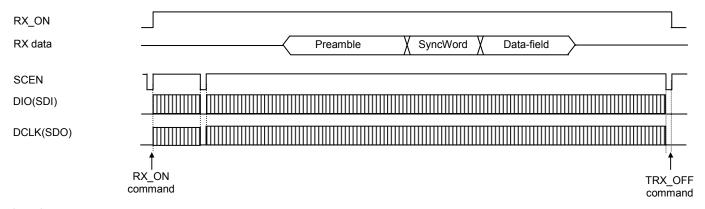
Not to access SPI until TX completion. During packet transmission, if SPI access is attempted by the host, TX data error can be expected.

ii) Data input mode (from host)

Set TXDIO_CTRL[1:0] ([DIO_SET: B0 0x0C(5-4)])=0b10.

After TX_ON, when SCEN is "H", DCLK is output from SDO pin during data input period after SyncWord. At falling edge of DCLK, TX data should be input to SDI from the host. After TRX_OFF is issued (SET_TRX[3:0] ([RF_STATUS: B0 0x0B(3-0)])=0x8), TX data/clock input/output are invalid. During DCLK output period, if SCEN becomes "L", DCLK output will stop. (SPI access has a priority)

(Note)


Not to access SPI until TX completion. During packet transmission, if SPI access is attempted by the host, TX data error can be expected.

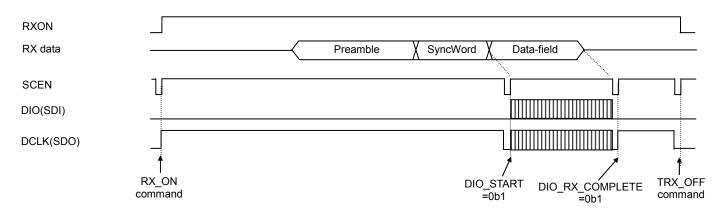
[RX]

i) Continuous output mode (to host)

Set RXDIO CTRL[1:0] ([DIO SET: B0 0x0C(7-6)])=0b01.

After RX_ON (SET_TRX[3:0]([RF_STATUS: B0 0x0B(3-0)])=0x6) issued, during SCEN is "H" period, DCLK is output from SDO pin, RX data is output from SDI pin at falling edge of DCLK. After TRX_OFF issuing(SET_TRX[3:0] ([RF_STATUS: B0 0x0B(3-0)])=0x8), DCLK/DIO output will stop. Even if DCLK/DIO are output, when SCEN becomes "L", DCLK/DIO will stop. (SPI access has a higher priority)

(Note)


Not to access SPI until RX completion. During packet receiption, if SPI access is attemped by the host, RX data error can be expected. It is recommended

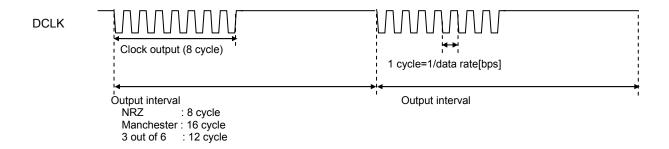
ii) Data ouput mode 1 or data output mode 2 (to host)

Set RXDIO CTRL[1:0] ([DIO SET: B0 0x0C(7-6)])=0b10/11

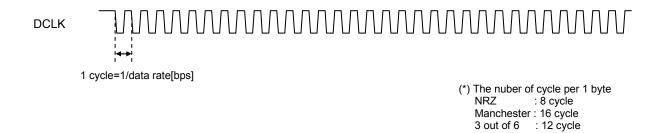
After RX_ON, RX data upon SyncWord (output mode 1) or RX data upon L-fileld (output mode 2) is buffered in RX_FIFO. During SCEN is "H", by DIO_START([DIO_SET: B0 0x0C(0)])=0b1, top data of buffered data will be output through DIO interface (DIO/DCLK). (RX data is output at falling edge of DCLK). Other output condition is same as the case of using GPIO:/ECT_CLK pins. After TRX_OFF isuing, DCLK/DIO output will stop. Even during DCLK/DIO are output period, if SCEN becomes "L", DCLK/DIO output will stop. (SPI access has a priority)

(In case of data output mode1)

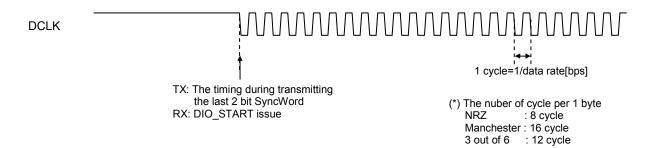
(Note)


Not to access SPI until RX completion. During packet receiption, if SPI access is attemped by the host, RX data error can be expected.

(3) DCLK output method


In Data output mode 2, decoded data is output. Therefore, The DCLK output section in a output interval changes with the coding method. DCLK output section is as follows.

In othe modes, undecoded data is input or output. DCLK is output continuously. Then, it is not depend on the coding method.


i) Data output mode 2

ii) TX continuous input mode or RX continuous mode

iii) TX Data input mode / RX Data output mode1

Timer Function

Wake-up timer

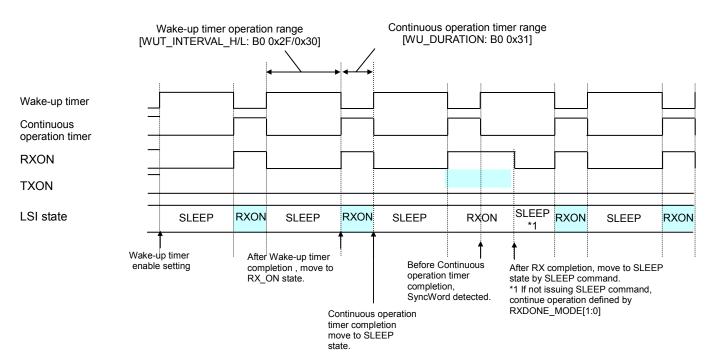
ML7406 has automatic wake-up function using wake-up timer. The following operations are possible by using wake-up timer.

- Upon timer completion, automatically wake-up from SLEEP state. After wake-up operation can be selected as RX_ON state or TX_ON state by WAKEUP_MODE ([SLEEP/WU_SET: B0 0x2D(6)]).
- By setting WUT_1SHOT_MODE ([SLEEP/WU_SET: B0 0x2D(7)]), continuous wake-up operation (interval operation) or one shot operation can be selected
- In interval operation, if RX ON /TX ON state is caused by wake-up timer, continuous operation timer is in operation...
- After moving to RX_ON state by wake-up timer, when continuous operation timer completed, move to SLEEP state automatically. However, if SyncWord is detected before timer completion, RX_ON state will be maintained. In this case, ML7406 does not go back to SLEEP state automatically. SLEEPsetting (SLEEP_EN[SLEEP/WU_SET: B0 0x2D(0)])=0b1) is necessary to go back to SLEEP state. However if RXDONE_MODE[1:0]([RF_STATUS_CTRL:B0 0x0A(3-2)]) =0b11, after RX completion, move to SLEEP state automatically.
- After moving to TX_ON state by wake-up timer, when continuous operation timer completed, go back to SLEEPstate automatically.
- After wake-up by combining with high speed carrier checking mode, CCA is automatically performed, if IDLE is detected, able to move to SLEEP state immediately. For details, please refer to the "(3) high speede carrier detection mode".
- By setting WU_CLK_SOURCE ([SLEEP/WU_SET:B0 0x2D(2)]), clock source for wake-up timer are selectable from EXT_CLK pin or on-chip RC OSC.

Wake-up intervalm, wake-up timer interval and continuous operation timer can be calculated in the following formula.

```
Wake-up interval [s] = Wake-up timer interval [s] + Continuous operation timer [s]
```

(Note)

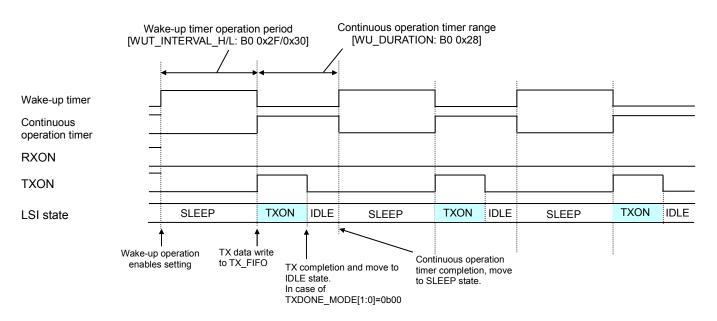

- In case of moving to TX_ON state after wake-up, move to SLEEP state when timer completed even in the middle of transmission. Continuous orration timer should be set in such manner that timer completing after TX completion.
- WUDT_CLK_SET[3:0] ([WUT_CLK_SET: B0 0x2E(7-4)]) and WUT_CLK_SET[3:0] ([WUT_CLK_SET: B0 0x2E (3-0)]) can be set independently.
- Minimum value for wake-up timer interval setting ([WUT_INTERVAL_H/L: B0 0x2F/0x30]) is 0x02. And minimum value for continuous operation timer setting ([WU_DURATION: B0 0x31]) is 0x01.
- Be noted that the SyncWord detection is not issued when in DIO mode with RXDIO_CTRL([DIO_SET: B0 0x0C(7-6)])=0b01. Therefore, when continuous operation timer completed, forcibly move to SLEEP state.

(1) Interval operation

[RX

After wake-up, RX_ON state. If continuous operation timer completed before SyncWord detection, automatically return to SLEEP state. If SyncWord detected, continue RX_ON. After RX completion, continue operation defined by RXDONE_MODE[1:0] ([RF_STATUS_CTRL: B0 0x0A(3-2)]).

[SLEEP/WU_SET: B0 0x2D(6-4)]=0b011

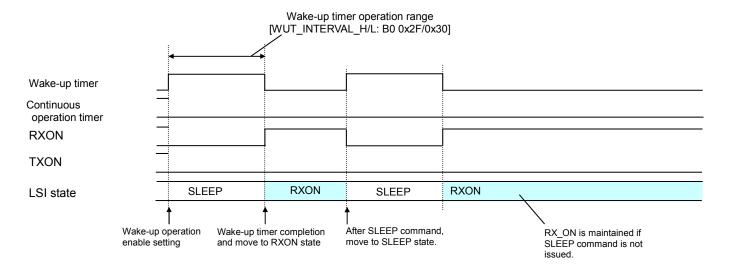


[TX]

After wake-up, TX_ON state. After TX completion, continue operation defined by TXDONE_MODE[1:0] ([RF_STATUS_CTRL: B0 0x0A(1-0)]).

If continuous operation timer completed, automatically return to SLEEP state. So continuous operation timer has to be set so that timer completion occur after TX completion.

[SLEEP/WU_SET: B0 0x2D(6-4)]=0b111

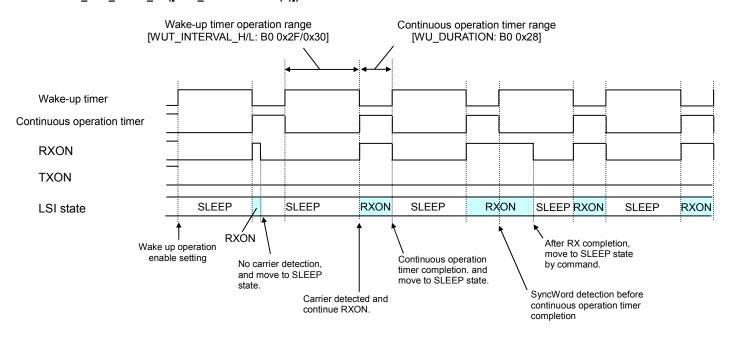


(2) 1 shot operation

[RX]

After wake-up timer completion, move to RX_ON state. And continue RX_ON state. Move to SLEEP state by SLEEP command. If wake-up timer interval ([WUT_INTERVAL_H/L: B0 0x2F/0x30]) is maintained, after re-issuing SLEEP command, 1 shot operation will be activated again. If RX completed during RX_ON, continue operation defined by RXDONE MODE[1:0] ([RF STATUS CTRL: B0 0x0A(3-2)]). Same manner in TX_ON state.

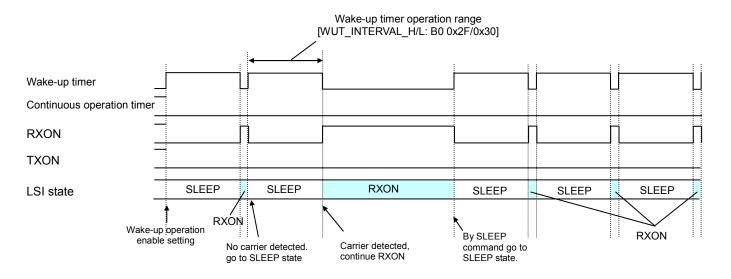
[SLEEP/WU_SET: B0 0x2D(7-4)]=0b1011



(3) Combination with high speed carrier detection

[Interval operation]

After wake-up timer completion, move to RX_ON state. Then perform CCA. If no carrier detected, automatically move to SLEEP state. If carrier detected, maintaining RX_ON state and perform SuncWord detection. If continuous operation timer completed before SyncWord detection, automatically move to SLEEP state. And If SyncWord detected, continue RX_ON state state.


[SLEEP/WU_SET: B0 0x2D(7-4)]=0b0011 FAST_DET_MODE_EN([CCA_CTRL: B0 0x39(3)])=0b1

[1 shot operation]

After wake-up timer completion, move to RX_ON state. And perform CCA to check carrier. If no carrier detected, go back to SLEEP state automatically. After wake-up timer completion, wake-up to check the carrier again. If carrier is detected, continue RX state. Able to go back to SLEEP by setting SLEEP parameters.

[SLEEP/WU_SET: B0 0x2D(7-4)]=0b1011 FAST_DET_MODE_EN([CCA_CTRL: B0 0x39(3)])=0b1

OGeneral purpose timer

ML7406 has general purpose timer. 2 channel of timer are able to function independently. Clock sources, timer setting can be programmed independently. When timer is completed, General purpose timer 1 interrupt (INT[22] group3) or General purpose timer 2 interrupt (INT[23] group3) will be generated.

General timer interval can be programmed as the following formula.

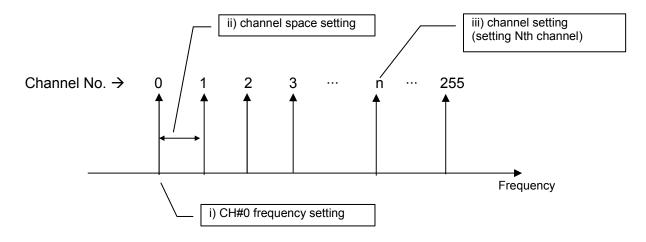
General purpose timer interval[s] = general purpose timer clock cycle *
Division setting ([GT_CLK_SET: B0 0x33]) *
General purpose timer interval setting ([GT1_TIMER: B0 0x34] or [GT2_TIMER: B0 0x35])

By setting GT2/1_CLK_SOURCE ([GT_SET: B0 0x32(5,1)]), clock sources for general purpose timer can be selectable from wake-up timer clock or 2MHz.

•Frequency Setting Function

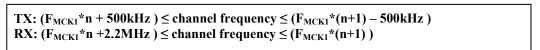
Channel frequency setting

Maximum 256 channels can be selected (CH#0 -CH#255) by the following resisters.

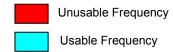

Frequency	1	Register
CH#0 frequency	TX	[TXFREQ_I: B1 0x1B], [TXFREQ_FH: B1 0x1C], [TXFREQ_FM: B1 0x1D] and [TXFREQ_FL: B1 0x1E]
	RX	[RXFREQ_I: B1 0x1F], [RXFREQ_FH: B1 0x20], [RXFREQ_FM: B1 0x21] and [RXFREQ_FL: B1 0x22]
Channel space	-	[CH_SPACE_H: B1 0x23] and [CH_SPACE_L: B1 0x24]
Channel setting	-	[CH_SET: B0 0x09]

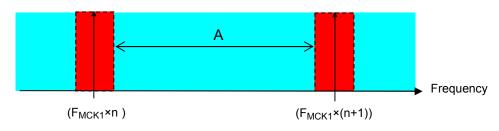
(1) Channel frequency setting overview

[Channel frequency setting]


Using above registers, channel frequency is defined as following formula.

[Channel frequency allocation image]




(Note)

The channel frequency to be selected must meet the following conditions. If the following conditions cannot be met, please change channel #0 frequency or use other channels. If this formula cannot be met, expected frequency is not functional or PLL may not be locked.

 F_{MCK1} : Master clock frequency n = integer


```
[Calculation example of above "A" range]
Condition: Master clock 26MHz, n=33
```

TX:(26*33+0.5)MHz \leq channel frequency to be used $\leq (26*(33+1)-0.5)$

→ 858.5MHz \leq channel frequency to be used \leq 883.5MHz

RX:(26*33+2.2)MHz \leq channel frequency to be used $\leq (26*(33+1)-2.2)$

 \rightarrow 860.2MHz \leq channel frequency to be used \leq 881.8MHz

(Note)

"CH#0 frequency (Hz)" and "channle space (Hz)" may have error (Hz). Then the "channel frequency error (Hz)" is defined as following formula.

Channel frequency error (Hz) = CH#0 frequency error (Hz) + channel space error (Hz)* channel setting

When changing "channel frequency" by setting "channel setting" without "CH#0 frequency" change, the "channel frequency error" will become larger than by setting both "CH#0 frequency" and "channel setting". If the "channel frequency error" is larger than expection, please consider to change "CH#0 frequency".

(2) Channel #0 frequency setting

TX frequency can be set by [TXFREQ_I: B1 0x1B], [TXFREQ_FH: B1 0x1C], [TXFREQ_FM: B1 0x1D] and [TXFREQ_FL: B1 0x1E]. RX frequency can be set by [RXFREQ_I: B1 0x1F], [RXFREQ_FH: B1 0x20], [RXFREQ_FM: B1 0x21] and [RXFREQ_FL: B1 0x22].

Channel #0 frequency setting value can be caluculated using the following formula.

$$I = \frac{f_{rf}}{f_{ref}} \text{ (Integer part)}$$

$$F = \left\{ \frac{f_{rf}}{f_{ref}} - I \right\} \cdot 2^{20} \text{ (Integer part)}$$

Here

 f_{rf} :channel #0 frequency

 f_{ref} :PLL reference frequency (=master clock frequency: F_{MCK1})

Integer part of frequency setting
 Fractional part of frequency setting

I (Hex) is set to [TXFREQ_I: B1 0x1B], [RXFREQ_I: B1 0x1F] registers.

F (Hex.) is set to the following registers.

For TX, from MSB, set in order of [TXFREQ_FH: B1 0x1C], [TXFREQ_FM: B1 0x1D], [TXFREQ_FL: B1 0x1E] registers.

For RX, from MSB, set in order of [RXFREQ_FH: B1 0x20], [RXFREQ_FM: B1 0x21], [RXFREQ_FL: B1 0x22] registers.

Frequency error (f_{err}) is calculated as follows:

$$f_{err} = \left\{ I + \frac{F}{2^{20}} \right\} \cdot f_{ref} - f_{rf}$$

[Example]

When set TX channel #0 frequency to 868MHz (master clock 26MHz), the calculations are as follows.

$$I = \frac{868MHz}{26MHz} \text{(Integer part)} = 33(0x21)$$

$$F = \left\{ \frac{868MHz}{26MHz} - I \right\} \cdot 2^{20} \text{(Integer part)} = 403298(0x062762)$$

Frequency error f_{err} is as follows:

$$f_{err} = \left\{ 33 + \frac{403298}{2^{20}} \right\} \cdot 26MHz - 868MHz = -11.45Hz$$

(3) Channel space setting

Channel space can be set by [CH_SPACE_H: B1 0x23], [CH_SPACE_L: B1 0x24] registers. Hexadecimal values calculated in the following formula should be set to [CH_SPACE_H: B1 0x23], [CH_SPACE_L: B1 0x24] registers. (MSB->LSB order)

Channel space is from the center frequency of given channel to adjacent channel center frequency.

Channel space setting value can be calculated using the following formula:

$$CH _SPACE = \left\{ \frac{f_{sp}}{f_{ref}} \right\} \cdot 2^{20} \quad \text{(Integer part)}$$

Here

CH _ SPACE : Channel space setting

 f_{sp} : Channel space [MHz]

 f_ref : PLL reference frequency (=master clock frequency : $F_\mathrm{MCK1})$

[Example]

When set channle space to 60kHz (master clock 26MHz), the calculation is as follows.

$$CH _SPACE = \left\{ \frac{0.06MHz}{26MHz} \right\} \cdot 2^{20}$$
 (Integer part) = 2419 (0x0973)

 $[CH_SPACE_H: B1 0x23] = 0x09$ $[CH_SPACE_L: B1 0x24] = 0x73$

oIF frequency setting

In order to support various data rate, RX filters have to be optimised. The RX filter can be selected according to the IF frequency. IF frequency is set by [IF_FREQ_H: B0 0x54],[IF_FREQ_L: B0 0x55] registers. IF frequency corresponds to each data rate must be selected as below.

	Data rate 4.8kbps 32.768kbps 50kbps 100kbps					
IF frequency	500kHz	500kHz	500kHz	720kHz		

For other data rate, please refer to "Initialization table".

If CCA is used to detect channel carrier power, required RX filter bandwidth may be different. [IF _FREQ_CCA_H: B1 0x56] and [IF_FREQ_CCA_L: B1 0x57] registers must be used for CCA purpose. IF frequency must be set according to the IF frequency.

IF frequency setting value can be calculated using the following formula:

$$IF _FREQ = \left\{ \frac{(f_{IF}/2)}{f_{ref}} \right\} \cdot 2^{20}$$
 (Integer part)

Here

IF FREQ: IF frequency setting

 f_{IF} : IF frequency [MHz]

 $f_{\it ref}$: PLL reference frequency (=master clock frequency: $F_{\it MCK1}$)

[Example]

When set IF frequency to 720kHz (master ckock 26MHz), the calculation is as follows.

IF_FREQ=
$$\{(0.72\text{MHz} \div 2) \div 26\text{MHz}\} \times 2^{20}$$
 (Integer part) = 14518 (0x38B6)
[IF_FREQ_H: B0 0x54] = 0x38
[IF_FREQ_L: B0 0x55] = 0xB6

OBPF frequency band setting

For normal operation (including AFC) and CCA operation, optimized BPF setting to [BPF_CO: B0 0x5C] and [BPF_CO_CCA: B0 0x5D] registers are necessary. As indicated below table, proper value correspond to each data rate, must be programmed.

	Data rate [kbps]	[DRATE_SET: B0 0x06]		al case : B0 0x5C]	CCA [BPF_CO_CCA: B0 0x5D]	
	[knh2]		coefficient	Setting value	coefficient	Setting value
Ī	4.8	0b0010	1.44	0xB8	1.44	0xB8
Ī	32.768	0b1000	1.44	0xB8	1.44	0xB8
	50	0b1010	1.44	0xB8	1.44	0xB8
Г	100	0b1011	1	0x80	1	0x80

Modulation setting

ML7406 supports GFSK modulation and FSK modulation.

(1) GFSK modulation setting

By setting GFSK_EN([DATA_SET1: B0 0x07(4)])=0b1, GFSK mode can be selected. In GFSK modulation, frequency deviation can be set by [GFSK_DEV_H: B1 0x30] and [GFSK_DEV_L: B1 0x31] registers and Gasusiaan filter can be set by [FSK_DEV0_H/GFIL0: B1 0x32] - [FSK_DEV3_H/GFIL6: B1 0x38] registers.

i) GFSK frequency deviation setting

F_DEV value can be calculated as the following formula:

$$F_{-}DEV = \left\{ \frac{f_{dev}}{f_{ref}} \right\} \cdot 2^{20} \quad \text{(Integer part)}$$

Here

F DEV: Frequency deviation setting

 f_{dev} : Frequency deviation [MHz]

 $f_{\it ref}$: PLL reference frequency (= master clock frequency: $F_{\it MCK1}$)

[Example]

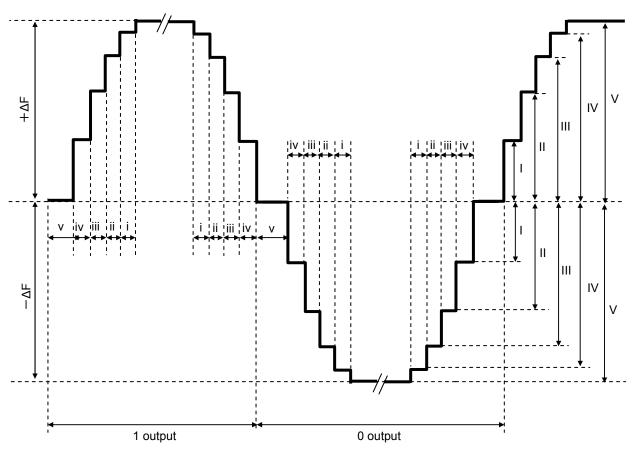
When set frequency deviation to 50kH (master clock 26MHz), the calculation is as follows.

$$F_DEV = \{0.05MHz \div 26MHz\} \times 2^{20}$$
 (Integer value) = 2016 (0x07E0)

[GFSK_DEV_H: B1
$$0x30$$
] = $0x07$
[GFSK_DEV_L: B1 $0x31$] = $0xE0$

ii) Gaussian filter setting

BT value of Gaussian filter and setting value to related registers are shown in the below table.


Register	BT value				
Register	0.5	1.0			
[FSK_DEV0_H/GFIL0: B1 0x32]	0x49	0x00			
[FSK_DEV0_L/GFIL1: B1 0x33]	0xA7	0x10			
[FSK_DEV1_H/GFIL2: B1 0x34]	0x0F	0x04			
[FSK_DEV1_L/GFIL3: B1 0x35]	0x14	0x0D			
[FSK_DEV2_H/GFIL4: B1 0x36]	0x19	0x1E			
[FSK_DEV2_L/GFIL5: B1 0x37]	0x1D	0x32			
[FSK_DEV3_H/GFIL6: B1 0x38]	0x1E	0x3C			

(Note)

GFSK filter coefficient setting register and FSK frequency deviation setting register are common. In GFSK mode, filter coefficient applies to this register. In FSK mode, frequency deviation applies to this register.

(2) FSK modulation setting

By setting GFSK_EN([DATA_SET1: B0 0x07(4)])=0b0, FSK mode can be selected. Fine frequency deviation can be set by [FSK_DEV0_H/GFIL0: B1 0x32] to [FSK_DEV4_L: B1 0x3B] registers. By adjusting [FSK_TIM_ADJ4-0: B1 0x3C-40] registers, FSK timing can be fine tuned.

 $TX_FSK_POL([DATA_SET1:B0 0x07(6)]) = 0b0 setting$

	Frequency deviation setting				Timing setting			
symbol	Register name	address	function	symbol	Register name	address	function	
I	FSK_FDEV0_H/GFIL0 FSK_FDEV0_L/GFIL1	B1 0x32/33		i	FSK_TIM_ADJ4	B1 0x3C		
II	FSK_FDEV1_H/GFIL2 FSK_FDEV1_L/GFIL3	B1 0x34/35	Frequency deviation	ii	FSK_TIM_ADJ3	B1 0x3D	Modulation timing	
III	FSK_FDEV2_H/GFIL4 FSK_FDEV2_L/GFIL5	B1 0x36/37	Resolution:	iii	FSK_TIM_ADJ2	B1 0x3E	4.3MHz/13MHz	
IV	FSK_FDEV3_H/GFIL6 FSK_FDEV3_L	B1 0x38/39	Approx.25Hz	iv	FSK_TIM_ADJ1	B1 0x3F	counter value (*1)	
V	FSK_FDEV4_H FSK_FDEV4_L	B1 0x3A/3B		V	FSK_TIM_ADJ0	B1 0x40		

(*1) Modulation timing resolution can be changed by FSK_CLK_SET ([FSK_CTRL: B1 0x2F(0)]).

(Note)

GFSK filter coefficient setting register and FSK frequency deviation setting register are common. In GFSK mode, filter coefficient applies to this register. In FSK mode, frequency deviation applies to this register.

•RX related function

AFC function

ML7406 supports AFC function. Frequency deviation (max±85ppm) between remote device and local device can be compensated by this function. Using this function, stable RX sensitivity and interference blocking performance can be achieved. This function can be enabled by setting AFC EN([AFC/GC CTRL: B1 0x15(7)])=0b1.

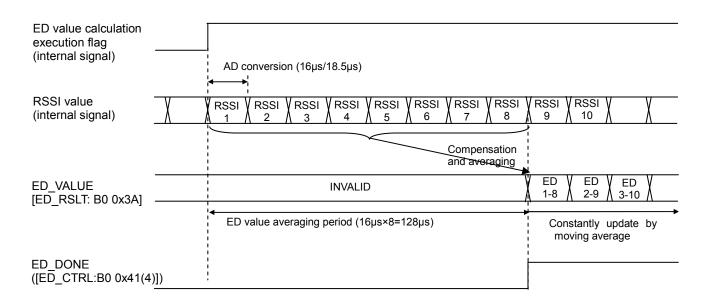
oEnergy detection value (ED value) acquisition function

ML7406 supports calculate Energy detection value (ED value) based on Receive signal strength indicator (RSSI). ED value acquisition can be enabled by setting ED_CALC_EN ([ED_CTRL: B0 0x41(7)])=0b1 and as soon as trnasition to RX ON state, automatically start acquiring ED value. During RX ON state, ED value constantly updated.

ED value is not RSSI value at given timing, but average values. Number of average times can be specified by ED_AVG[2:0] ([ED_CTRL: B0 0x41(2-0)]). During diversity operation, DIV_ED_AVG[2:0] ([2DIV_MODE: B1 0x48(2-0)]) is used for setting. After acquiring specified average ED value, ED_DONE([ED_CTRL: B0 0x41(4)]) becomes "0b1" and ED_VALUE[7:0] ([ED_RSLT: B0 0x3A]) is updated.

ED DONE bit will be cleared if one of the following conditions are met.

- 1. Gain is switched.
- 2. Once stopping ED value acquisition and then resume it.
- 3. Antenna is switched. (when diversity is enabled)

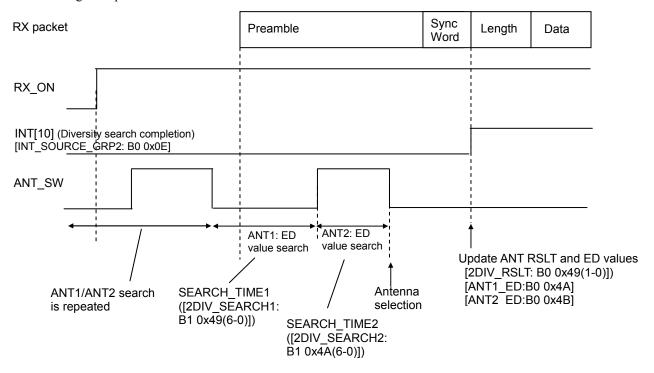

Timing from ED value starting point to ED value acquisition is calculated as below formula.

ED value average time = AD conversion time $(16\mu s/17.8\mu s)$ * Number of average times.

(Note) AD conversion time can be set by ADC_CLK_SET([ADC_CLK_SET: B1 0x08(4)]). Reset value is 2MHz and AD conversion timer is 16µs.

The timing example is as follows:

```
[condition]
Set ADC_CLK_SEL([ADC_CLK_SEL: B1 0x08(4)])=0b1 (2MHz)
Set ED_AVG[2:0] ([ED_CTRL: B0 0x41(2-0)])=0b011 (8 times averaging)
```



Diversity function

ML7406 supports two antenna diversity function.

While setting 2DIV_EN([2DIV_CTRL: B0 0x48(0)])=0b1, as soon as RX_ON is set, diversity mode will start. When diversity mode is started, and upon RX data detection, each ED value will be acquired by switching two antennas. And then antenna with higher ED value will be selected automatically. As diversity uses preamble data for ED value acquisition, longer preamble length is desirable. If preamble is too short, accurate ED values may not be obtained.

The timing example is as below.

ED values acquired by the diversity operation are stored in [ANT1_ED: B0 0x4A] and [ANT2_ED: B0 0x4B] registers and antenna diversity result is indicated at 2DIV_RSLT[2:0] ([2DIV_RSLT: B0 0x49(1-0)]) when SyncWord is detected. In diversity operation, the number of ED average times is specified by 2DIV_ED_AVG[2:0]([2DIV_MODE: B1 0x48(2:0)]). Search time for each antenna is defined by [2DIV_SEARCH1:B1 0x49] and [2DIV_SEARCH2:B1 0x4A] registers. And its time resolution can be defined by SEARCH_TIME_SET([2DIV_SEARCH1: B1 0x49(7)]).

If diversity search completion interrupt (INT[10] group2) is cleared, ED values and antenna diversity result are cleared.

(Note)

When an incorrect diversity completion caused by errornous detection due to thermal noize, ML7406 resume antenna diversity automatically. But when receiving a desired signal during the process of errounous detection, ED value obtained by [ANT1 ED:B0 0x4A] or [ANT2 ED:B0 0x4B] may indicate a low value different from the actual input level.

If this event occures, the actual ED value of desired signal can be achibed by reading [ED_RSLT:B0 0x3A] registers after SyncWord detection interrupt (INT[13] group2) generation.

(1) Antenna switching function

By using [2DIV_CTRL: B0 0x48], [ANT_CTRL: B0 0x4C], [SPI/EXT_PA_CTRL: B0 0x53] registers, TX-RX signal selection (TRX SW), antenna switching signal (ANT SW), external PA control signal (DCNT) can be controlled.

ML7406 can support both SPDT and DPDT antena swith control. ANT_SW signal and TRX_SW signal output considion for each antenna switch are explained below.

DPDT switch

Set 2PORT_SW([2DIV_CTRL: B0 0x48(1)])=0b1, ANT_CTRL1([2DIV_CTRL: B0 0x48(5)])=0b0. ANT_SW, TRX_SW output condition of each Idle, TX, RX state are as follow. (default setting) If INV_TRX_SW([2DIV_CTRL: B0 0x48(2)])=0b1, polarity of ANT_SW and TRX_SW are reversed.

TX/RX state	INV_TRX_SW=0b0 (default setting)		INV_TRX_SW=0b1 (reversed polarity)		Description
state	ANT_SW	TRX_SW	ANT_SW	TRX_SW	
Idle	Н	L	L	Н	Idle state
TX	L	Н	Н	L	TX state
	Н	L	L	Н	When Diversity disable or initial condition when diversity enable is set ([2DIV_CTRL: B0 0x48(0)]=0b1).
RX	L/H	H/L	H/L	L/H	If diversity enable is set, during searching, (ANT_SW=H, TRX_SW=L) and (ANT_SW=L, TRX_SW=H) are switched alternatively. After diversity completion, fix to one of the condition.

SPDT switch

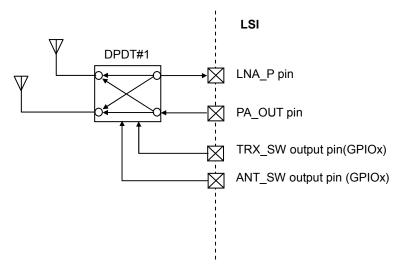
Set 2PORT_SW([2DIV_CTRL: B0 0x48(1)])=0b0, ANT_CTRL1([2DIV_CTRL: B0 0x48(5)])=0b0. ANT_SW, TRX_SW output condition of each Idle, TX, RX state are as follow. (default setting) If INV_TRX_SW([2DIV_CTRL: B0 0x48(2)])=0b1, polarity of ANT_SW and TRX_SW are reversed.

TX/RX condition	INV_TRX_SW([2DIV_CTRL: B0 0x48(2)])=0 (default setting)		INV_TRX_SW([2DIV_CTF B0 0x48(2)])=1 (polarity reverse)		Description
	ANT_SW	TRX_SW	ANT_SW	TRX_SW	
Idle	L	L	L	Н	Idel state
TX	L	Н	L	L	TX state
RX	L	L	L	Н	When diversity disable or initial condition when diversity enable is set ([2DIV_CTRL: B0 0x48(0)]=0b1).
	H/L	L	H/L	Н	If diversity enable is set, during searching (ANT_SW=H and (ANT_SW=L) is switched alternatively. After diversity completion, fix to one of the condition.

In the above setting, If INV_ANT_SW([2DIV_CTRL: B0 0x48(3)])=0b1, ANT_CTRL1([2DIV_CTRL: B0 0x48(5)])=0b1 are set, polarity of ANT_SW pin is reversed.

TX/RX state	INV_ANT_SW([2DIV_CTRL: B0 0x48(3)])=0 ANT_CTRL1([2DIV_CTRL: B0 0x48(5)])=any (default setting)		INV_ANT_SW([2DIV_CTRL: B0 0x48(3)])=1 ANT_CTRL1([2DIV_CTRL: B0 0x48(5)])=1		Description
	ANT_SW	TRX_SW	ANT_SW	TRX_SW	
Idle	L	L	Н	L	Idle state
TX	L	Н	Н	Н	TX state
RX	L	L	Н	L	When diversity disable or intial codition when diversity enable is set ([2DIV_CTRL: B0 0x48(0)]=0b1).
	H/L	L	L/H	L	If diversity enable is set, during searching (ANT_SW=H) and (ANT_SW=L) is switched alternatively. After diversity completion, fix to one of the condition.

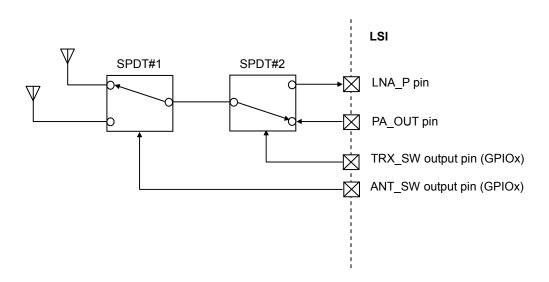
(2) Antenna switch forced setting


By [ANT_CTRL: B0 0x4C] register, ANT_SW pin output conditions can be set to fix.

TX: By TX_ANT_EN([ANT_CTRL: B0 0x4C(0)])=0b1, TX_ANT([ANT_CTRL: B0 0x4C(1)]) condition will be output. RX: By RX_ANT_EN([ANT_CTRL: B0 0x4C(4)])=0b1, RX_ANT([ANT_CTRL: B0 0x4C(5)]) condition will be output.

However, output is defined by [GPIIO * _CTRL: B0 0x4E - 0x51] register , [GPIIO * _CTRL:B0 0x4E - 0x51] registers setting has higer priority.

Antenna switching control signals can be also used as below.


Example 1) using one DPDT switch
Please set 2PORT_SW([2DIV_CTRL: B0 0x48(1)])=0b1.

(Note) altenate external PA control signal exists (GOIPn or EXT_CLK pin).

(Note) external circuits around LNA_P pin, PA_OUT pin and antenna switch (DPDT#1) are omitted in this example.

Example 2) using 2 SPDT switches Please set 2PORT_SW([2DIV_CTRL: B0 0x48(1)])=0b0.

(Note) altenate external PA control signal exsits. (GPIOx or EXT CLK pin)

(Note) external circuits around LNA_P pin, PA_OUTpin and antenna switch(SPDT#2) are omitted in this example.

oCCA (Clear Channel Assessment) function

ML7406 supports CCA function. CCA function is to make a judment wheher the specified frequency channel is in-use or available. Normal mode, continuous mode and IDLE detection mode are supported as following table.

[CCA mode setting]

	[CCA_CTRL: B0 0x39]		
	Bit4 (CCA_EN)	Bit5 (CCA_CPU_EN)	Bit6 (CCA_IDLE_EN)
Normal mode	0b1	0b0	0b0
Continuous mode	0b1	0b1	0b0
IDLE detection mode	0b1	0b0	0b1

(1) Normal mode

Normal mode determines IDLE or BUSY. CCA (Normal mode) will be executed when RX_ON is issued while CCA_EN(CCA_CTRL: B0 0x39(4)])=0b1, CCA_CPU_EN(CCA_CTRL: B0 0x39(5)])=0b0 and CCA_IDLE_EN (CCA_CTRL: B0 0x39(6)])=0b0 are set.

Judgement of CCA is determined by average ED value and CCA threshold value defined by [CCA_LVL: B0 0x37] register. IF average ED value in [ED_RSLT: B0 0x3A] register exceeds the CCA threshold value, it is considered as "BUSY". And CCA_RSLT[1:0]([CCA_CTRL: B0 0x39(1-0)]) =0b01 is set

If average ED value is smaller than CCA threshold value and maintains IDLE detection period which is defined by IDLE_WAIT[9:0] of the [IDLE_WAIT_L: B0 0x3B], [IDLE_WAIT_H: B0 0x3C] registers. it is considered as "IDLE". And CCA_RSLT[1:0]([CCA_CTRL: B0 0x39(1-0)])=0b00 is set. For details operation of CCA_IDLE_WAIT[9:0], please refer to "IDLE detection for long time period"

If BUSY or IDLE state is detected, CCA completion interrupt (INT[18] group3) is generated, CCA_EN bit is cleared to 0b0 automatically.

Upon clearing CCA completion interrupt, CCA_RSLT[1:0]([CCA_CTRL: B0 0x39(1-0)]) are reset to 0b00. Therefore CCA_RSLT[1:0] should be read before clearing CCA completion interrupt.

If ED value exceeds the value defined by [CCA_IGNORE_LVL: B0 0x36] register, and as long as a given ED value is included in the averaging target of ED value calculation, IDLE judgement is not performed. In this case if average ED value exceeds CCA threshold value, it is considered as "BUSY" and CCA is terminated.

If average ED value is smaller than CCA threshold valu, IDLE judgement is not determined. And CCA_RSLT[1:0] ([CCA_CTRL: B0 0x39(1-0)]) indicates 0b11. CCA operation continues until BUSY is determined or gievn ED value is out of averaging target and IDLE is determined. For details operation of ED value exceeding [CCA_IGNORE_LVL: B0 0x36] register, please refer to "IDLE determination exclusion under strong signal input".

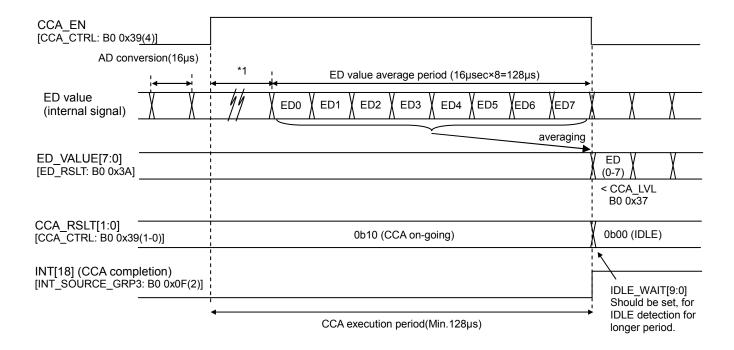
Timming from CCA command issue to CCA completion is in the formula below.

[IDLE detection]

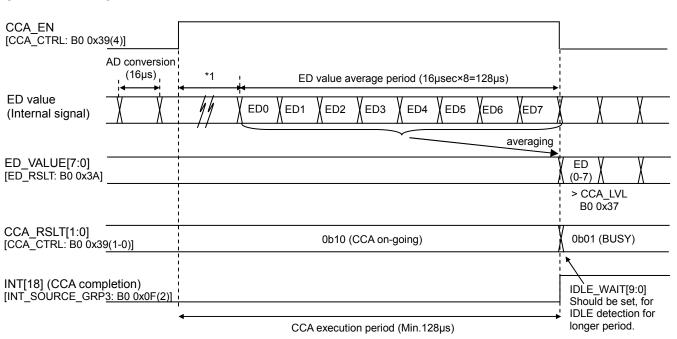
CCA execution timing = (ED value average times + IDLE WAIT setting) * AD conversion time

[BUSY detection]

CCA execution time = ED value average time * AD conversion time


(Note)

- 1. Above formula does not consider IDLE judgement exclusion based on [CCA_IGNORE_LVL: B0 0x36] register. For details, please refer to "IDLE detection exclusion under strong signal input".
- 2. AD conversion time can be slected by ADC_CLK_SEL([ADC_CLK_SET: B1 0x08(4)]). ADC_CLK_SEL=0b0:17.7µs , 0b1:16µs(default)


The following is timing chart for normal mode.

[Condition]
ADC_CK_SEL([ADC_CLK_SET: B0 0x08(4)])=0b1 (2MHz)
ED_AVG[2:0] ([ED_CTRL: B0 0x41(2-0)])=0b011 (ED value 8 times average)
IDLE_WAIT[9:0] ([IDLE_WAIT_L/H: B0 0x3C/3B(1-0)])=0b00_0000_0000 (IDLE detection 0µs)

[IDLE detection case]

[BUSY result case]

(Note)

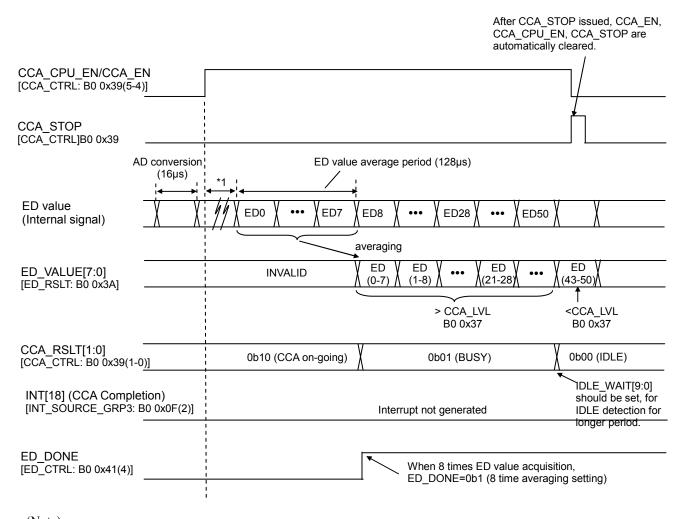
*1 During CCA operation, if set bandwidth to be extended (default is not extended), enabling filter stabilization time by setting CCA_MASK_EN([CCA_MASK_SET: B2 0x7E(4)]) = 0b1. Stabilization time should be 1 ADC conversion time. If this register is enabled, input operation is suspended until filter become stable.

(2) Continuous mode

Continuous mode continues CCA untill terminated by the host MCU. CCA continuous mode will be executed when RX_ON is issued while CCA_EN(CCA_CTRL: B0 0x39(4)])=0b1, CCA_CPU_EN(CCA_CTRL: B0 0x39(5)])=0b1 and CCA_IDLE_EN(CCA_CTRL: B0 0x39(6)])=0b0 are set.

Like normal mode, CCA judgement is determined by average ED value and CCA threshold defined by [CCA_LVL: B0 0x37] register. IF average ED value in [ED_RSLT: B0 0x3A] register exceed the CCA threshold value, it is considered as "BUSY". And CCA_RSLT[1:0]([CCA_CTRL: B0 0x39(1-0)]) = 0b01 is set.

If average ED value is smaller than CCA threshold value and maintains IDLE detection period which is defined by IDLE_WAIT[9:0] of the [IDLE_WAIT_L: B0 0x3B], [IDLE_WAIT_H: B0 0x3C] registers, it is considered as "IDLE". And CCA_RSLT[1:0]([CCA_CTRL: B0 0x39(1-0)])=0b00 is set. For details operation of CCA_IDLE_WAIT[9:0], please refer to "IDLE detection for long time period".


If ED value exceeds the value defined by [CCA_IGNORE_LVL: B0 0x36] register, as long as a given ED value is included in the averaging target of ED value calculation, IDLE judgement is not performed. In this case if average ED value exceed CCA threshold level, it is considered as "BUSY" and CCA_RSLT[1:0] ([CCA_CTRL: B0 0x39(1-0)]) indicates 0b01. If average ED value is smaller than CCA threshold level, IDLE judgement is not determined. And CCA_RSLT[1:0] ([CCA_CTRL: B0 0x39(1-0)]) indicates 0b11. For details operation of ED value exceeding [CCA_IGNORE_LVL: B0 0x36] register, please refer to "IDLE determination exclusion under strong signal input".

Continuous mode does not stop when BUSY or IDLE is detected. CCA operation continues until 0b1 is set to CCA_STOP([CCA_CTRL: B0 0x39(7)]). Result is updated every time ED value is acquired. CCA completion interrup (INT[18] group3) will not be generated.

The follwing is timing chart for continuous mode.

```
[Condition]
ADC_CK_SEL([ADC_CLK_SET: B0 0x08(4)])=0b1 (2MHz)
ED_AVG[2:0] ([ED_CTRL: B0 0x41(2-0)])=0b011 (ED value 8 times average)
IDLE_WAIT[9:0] ([IDLE_WAIT_L/H: B0 0x3C/3B(1-0)])=0b00_0000_0000 (IDLE detection period 0μs)
```

[BUSY to IDLE transition, terminated with CCA STOP]

(Note)

^{*1} During CCA operation, if set bandwidth to be extended (default is not extended), enabling filter stabilization time by setting CCA_MASK_EN([CCA_MASK_SET: B2 0x7E(4)]) = 0b1. Stabilization time should be 1 ADC conversion time. If this register is enabled, input operation is suspended until filter become stable.

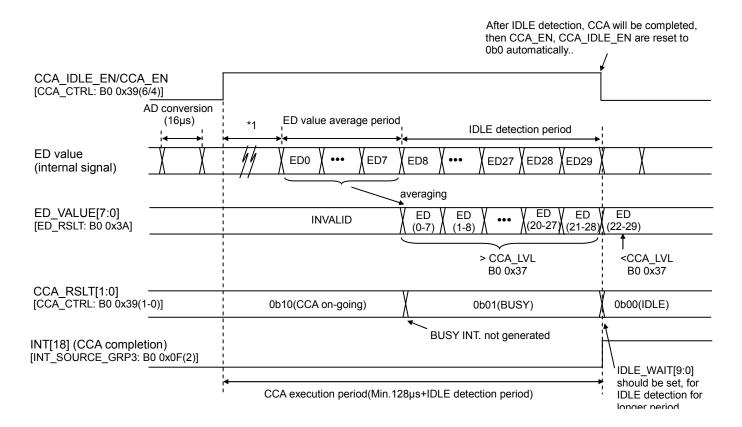
(3) IDLE detection mode

IDLE detection mode continues CCA until IDLE detection. IDLE detection CCA will be executed when RX_ON is issued while CCA_EN(CCA_CTRL: B0 0x39(4)])=0b1, CCA_CPU_EN(CCA_CTRL: B0 0x39(5)])=0b0 and CCA_IDLE_EN (CCA_CTRL: B0 0x39(6)])=0b1 are set.

Like normal mode, CCA judgement is determined by average ED value and CCA threshold defined by [CCA_LVL: B0 0x37] register. IF average ED value in [ED_RSLT: B0 0x3A] register exceed the CCA threshold value, it is considered as "BUSY". And CCA RSLT[1:0]([CCA CTRL: B0 0x39(1-0)]) =0b01 is set.

If average ED value is smaller than CCA threshold value and maintains IDLE detection period which is defined by IDLE_WAIT[9:0] of the [IDLE_WAIT_L: B0 0x3B], [IDLE_WAIT_H: B0 0x3C] registers. it is considered as "IDLE". And CCA_RSLT[1:0]([CCA_CTRL:B0 0x39(1-0)]) =0b00 is set. For details operation of CCA_IDLE_WAIT[9:0], please refer to "IDLE detection for longer period".

In IDLE detection mode, only when IDLE is detected, CCA completion interrupt (INT[18] group3 is generated. After IDLE detection, CCA_EN and CCA_IDLE_EN are reset to 0b0.


Upon clearing CCA completion interrupt, CCA_RSLT[1:0]([CCA_CTRL: B0 0x39(1-0)]) are reset to 0b00. CCA_RSLT[1:0] should be read before clearing CCA completion interrupt.

If ED value exceeds the value defined by [CCA_IGNORE_LVL: B0 0x36] register, as long as a given ED value is included in the averaging target of ED value calculation, IDLE judgement is not performed. In this case, if average ED value is smaller than CCA threshold level, IDLE determination is not performed and CCA_RSLT[1:0] ([CCA_CTRL: B0 0x39(1-0)]) indicates 0b11. CCA operation continues until given ED value is out of averaging target and IDLE is determined. For details of ED value exceeding [CCA_IGNORE_LVL: B0 0x36] register, please refer to "IDLE determination exclusion under strong signal input".

The follwing is timing chart for IDLE detection.

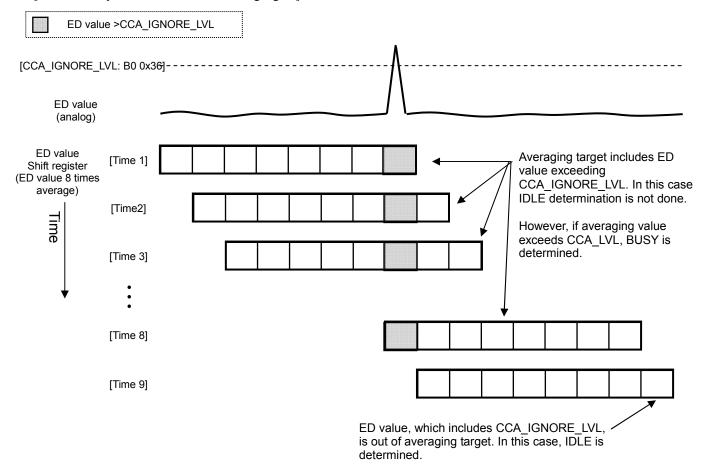
[Upon BUSYdetection, continue CCA and IDLE detection case]

[Condition]
ADC_CK_SEL([ADC_CLK_SET: B0 0x08(4)])=0b1 (2MHz)
ED_AVG[2:0]([ED_CTRL: B0 0x41(2-0)])=0b011 (ED value 8 times average)
IDLE_WAIT[9:0] ([IDLE_WAIT_L/H: B0 0x3C/3B(1-0)])=0b00_0000_0000 (IDLE detection period 0μs)

(Note)

^{*1} During CCA operation, if set bandwidth to be extended (default is not extended), enabling filter stabilization time by setting CCA_MASK_EN([CCA_MASK_SET: B2 0x7E(4)]) = 0b1. Stabilization time should be 1 ADC conversion time. If this register is enabled, input operation is suspended until filter become stable.

(4) IDLE determination exclusion under strong signal input


If acquired ED value exceeds [CCA_IGNORE_LVL: B0 0x36] register, IDLE dertermination is not performed as lon as a given ED value is included in the averaging target range. If average ED value including this strong ED value indicated in [ED_RSLT: B0 0x39] rehgiser exceeds the CCA threshold value defined by [CCA_LVL: B0 0x37] register, it is considered as "BUSY". And CCA_RSLT[1:0]([CCA_CTRL: B0 0x39(1-0)])=0b01 is set.

If average ED value is smaller than CCA threshold value, IDLE determination is not performed and CCA_RSLT[1:0]([CCA_CTRL: B0 0x39(1-0)]) indicates 0b11 "CCA evaluation under going (ED value excluding CCA judgement acquisition)". CCA will continue until IDLE or BUSY determination (in case of IDLE detection mode, IDLE is determined. In case of continuous mode, CCA_STOP([CCA_CTRL: B0 0x39(7)]) is issued.)

(Note)

CCA completion interrupt (INT[18] group3) is generated CCA only when IDLE or BUSY is determined. Therefore, if data whose ED value exceeds CCA_IGNORE_LVL are input intermittently, neither IDLE or BUSY cane be determined and CCA may continues.

[ED value acquisition under extrem strong signal]

The follwing is timing chart for CCA determination exclusion under strong signal.

[During IDLE_WAIT counting, detected extremly strong signal. After the given signal is out of averaging target, IDLE detection case]

[Condition]
CCA normal mode
ADC_CK_SEL([ADC_CLK_SET: B0 0x08(4)])=0b1 (2MHz)
ED_AVG[2:0]([ED_CTRL: B0 0x41(2-0)])=0b011 (ED value 8 times average)
IDLE_WAIT[9:0]([IDLE_WAIT_L/H: B0 0x3C/3B(1-0)])=0b00_0000_0111(IDLE detection period 112μs)

(Note)

(5) IDLE detection for longer time period

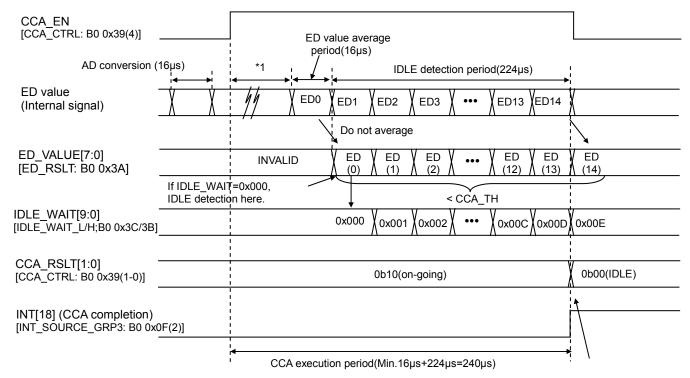
When CCA IDLE detection is performed for longer time period, IDLE_WAIT[9:0]([IDLE_WAIT_L/H:B0 0x3C/3B(1-0)] can be used. By setting IDLE_WAIT [9:0], averaging period longer than the period (for example, AD conversion16µs, 8 times average setting 128µs) can be possible.

This function can be used for IDLE determination – by counting times when average ED value becomes smaller than CCA threshold defined by [CCA_LVL: B0 0x37] register. When counting exceed IDLE_WAIT [9:0], IDLE determination is done. If average ED value exceeds CCA threshold level, imemediately "Busy" is determined without wait for IDLE_WAIT [9:0] period.

The following timing chart is IDLE detection setting IDLE WAIT[9:0].

[ED value 8 timesv average IDLE detection case]

[Condition]
CCA normal mode
ADC_CK_SEL([ADC_CLK_SET: B0 0x08(4)])=0b1 (2MHz)
ED_AVG[2:0]([ED_CTRL: B0 0x41(2-0)])=0b011 (ED value 8 times average)
IDLE_WAIT[9:0]([IDLE_WAIT_L/H: B0 0x3C/3B(1-0)])=0b00_0000_0011 (IDLE detection period 48µs)



done.

^{*1} During CCA operation, if set bandwidth to be extended (default is not extended), enabling filter stabilization time by setting CCA_MASK_EN([CCA_MASK_SET: B2 0x7E(4)]) = 0b1. Stabilization time should be 1 ADC conversion time. If this register is enabled, input operation is suspended until filter become stable.

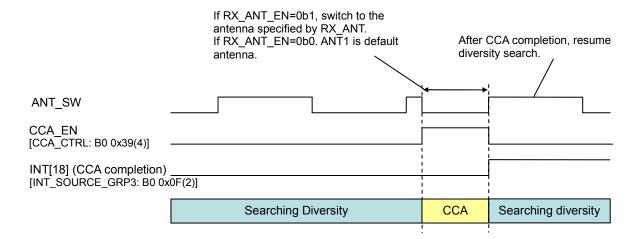
[ED value 1time IDLE detection case]

```
[Condition]
CCA normal mode
ADC_CK_SEL([ADC_CLK_SET: B0 0x08(4)])=0b1 (2MHz)
ED_AVG[2:0]([ED_CTRL: B0 0x41(2-0)])=0b000 (ED value 1 time average)
IDLE_WAIT[9:0]([IDLE_WAIT_L: B0 0x3C/H: B0 0x3C/3B(1-0)])=0b00_0000_1110 (IDLE detection period 224µs)
```


(average ED value < CCA_LVL) continue for AD conversion period 14 times (224µs), then IDLE detection done.

(Note)

^{*1} During CCA operation, if set bandwidth to be extended (default is not extended), enabling filter stabilization time by setting CCA_MASK_EN([CCA_MASK_SET: B2 0x7E(4)]) = 0b1. Stabilization time should be 1 ADC conversion time. If this register is enabled, input operation is suspended until filter become stable.

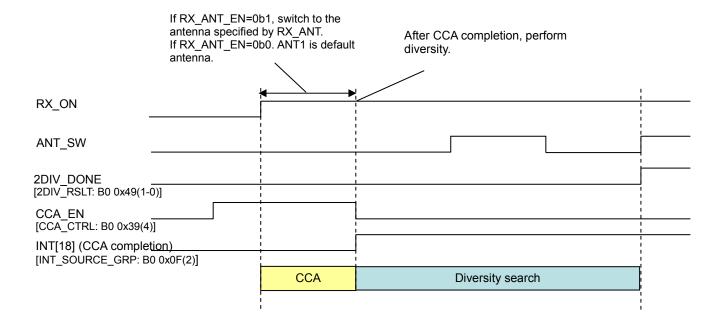

(6) CCA operation during diversity

CCA operation during antenna diversity

During diversity, if CCA command is issued, diversity terminated and CCA starts.

Upon CCA starting, antenna is fixed to reset value(*1), maintaining until next diversity search. However, if RX_ANT_EN([ANT_CTRL:B0 0x4C(4)])=0b1 is set, antenna is specified by RX_ANT([ANT_CTRL: B0 0x4C(5)]). After CCA completion, diversity will be executed agaim.

*1 Please refer to the "Antenna switching function". According to the default setting, ANT_SW and TRX_SW signals are set.


(Note)

During CCA operation, RX operation is performed at the same time, even if CCA completion interrupt (INT[18] group3) is not generated, SyncWord detection interrupt (INT[13] group2), RX FIFO access error interrupt (INT[12] group2), RX length error interrupt (INT[11] group2), CRC error interrupt (INT[9] group2), RX completion interrupt (INT[8] group2) or FIFO-Full interrupt (INT[5] group1) can be generated.

For details diversity function, please refer to the "diversity function".

During diversity, before RX_ON state, CCA is performed.

If diversity ON setting and CCA operation setting is enabled before RX_ON state, after RX_ON state transition, diversity will not perform, but CCA will start. After CCA completion, diversity will be performed.

(7) CCA threshold setting

CCA threshold value defined by [CCA_LVL: B0 0x37] register, should be considered desired input leve (ED value), components variation, temperature fluctuation, loss at antenna and matching circuits. Input level and ED value are described in the follow table.

ED value =
$$255 / 70 * (107 + input level[dBm])$$

However, if BPF setting modified and CCA is executed, ED value become bigger than normal case. CCA threshold can be set as below, taking this compensation and variations into account.

CCA threshold = 255 / 70 * (107 + input level[dBm] - variations - other losses) + CCA compensation

Item	Value
Variation (individual, temp.)	6dB
Other loss	Antenna, matchich circuits loss
CCA compensation	12@100kbps, 15@200kbps, 0@other rate

Example) When input level threshold is set to -75dBm conditions:other losses 1dB, 100kbps

CCAthreshold =
$$255 / 70 * (107 - 75 - 6 - 1) + 12$$

 ≈ 103
= $0x67$

In order to validate whether CCA threshold is optimised or not, CCA should be executed and confirming level changing from IDLE to BUSY, every time input level is changed,

Other Functions

OData rate setting function

(1) Data rate change setting

ML7406 supports various TX/RX data rate setting defined by the following registers.

TX: [TX RATE H: B1 0x02] and [TX RATE L: B1 0x03] registers

RX: [RX_RATE1_H: B1 0x04], [RX_RATE1_L: B1 0x05] and [RX_RATE2: B1 0x06] registers

TX/RX data rate can be defined in the following formula.

[TX]

TX data rate [bps] = round $(26MHz / 13/TX_RATE[11:0])$

Recommended values for each data rate are in the table below. Registers value below are automatically set to [TX_RATE_H], [TX_RATE_L] registers by setting TX_DRATE[3:0] ([DRATE_SET: B0 0x06(3-0)]).

TX data rate [kbps]	[TX_RATE_H][TX_RATE_L] register setting value	Data rate deviation [%] *1
1.2	1667d	-0.02
2.4	833d	0.04
4.8	417d	-0.08
9.6	208d	0.16
32.768	61d	0.06
50	40d	0.00
100	20d	0.00
200	10d	0.00
300	7d	3.17
400	5d	0.00
500	4d	0.00

^{*1} Data rate deviation is assumption that frequency deviation of master clock(26MHz crystal oscillator or TCXO or SPXO) is 0ppm.

[RX]

RX data rate [bps] = round $(26MHz / \{RX_RATE1[11:0] \times [RX_RATE2[6:0]\})$

Recommended values for each data rate are in the table below. Registers value below are automatically set to [RX_RATE1_H][RX_RATE1_L] [RX_RATE2] registers by setting RX_DRATE[3:0]([DRATE_SET:B0 0x06(7-4)]).

RX dta rate [kbps]	[RX_RATE1_H][RX_RATE1_L] register setting value	[RX_RATE2] register setting
1.2	169d	0d
2.4	85d	0d
4.8	42d	0d
9.6	21d	0d
32.768	11d	72d
50	8d	65d
100	4d	65d
200	5d	26d
300	3d	29d
400	2d	32d
500	2d	26d

(Note)

When LOW_RATE_EN([CLK_SET2:B0 0x03(0)])=0b1, [RX_RATE1_H/L] and [RX_RATE2] registers are not set automatically by setting RX_DRATE[3:0]. Please calcurate appropriate values by replacing the 8.66MHz to 26MHz in the above formula and set them to each register.

(2) Other register setting associate with data rate change

Data rate can be calonged by RX_DRATE[3:0] ([DRATE_SET(7-4)]) and TX_DRATE[3:0] ([DRATE_SET(3-0)]), below registers may have to be changed.

(Note)

- 1. Depending on data rate, the following chage may not be necessary. For details, please refer to each register description.
- 2. Please change data rate setting in TRX_OFF state.
- 3. After change of data rate setting, please execute RST1 [RST_SET: B0 0x01(1)] (MODEM Reset).

Parameters	Registers		
Farameters	Name	Address	
Data rate	DRATE_SET	B0 0x06	
Channel space	CH_SPACE_H	B1 0x23	
Charmer space	CH_SPACE_L	B1 0x24	
Frequency deviation(GFSK)	GFSK_DEV_H	B1 0x30	
Frequency deviation(GFSK)	GFSK_DEV_L	B1 0x31	
	FSK_DEV0_H/GFIL0	B1 0x32	
	FSK_DEV0_L/GFIL1	B1 0x33	
	FSK_DEV1_H/GFIL2	B1 0x34	
	FSK_DEV1_L/GFIL3	B1 0x35	
Fraguencydeviation (FSK)	FSK_DEV2_H/GFIL4	B1 0x36	
Frequencydeviation (FSK)	FSK_DEV2_L/GFIL5	B1 0x37	
	FSK_DEV3_H/GFIL6	B1 0x38	
	FSK DEV3 L	B1 0x39	
	FSK DEV4 H	B1 0x3A	
	FSK DEV4 L	B1 0x3B	
	FSK_TIM_ADJ4	B1 0x3C	
	FSK TIM ADJ3	B1 0x3D	
Frequency deviation time(FSK)	FSK_TIM_ADJ2	B1 0x3E	
	FSK_TIM_ADJ1	B1 0x3F	
	FSK_TIM_ADJ0	B1 0x40	
IT fraguency	IF_FREQ_H	B0 0x54	
IF frequency	IF_FREQ_L	B0 0x55	
If frequency during CCA	IF_FREQ_CCA_H	B0 0x56	
If frequency during CCA	IF_FREQ_CCA_L	B0 0x57	
BPF coefficient	BPF_CO	B0 0x5C	
BPF coefficient during CCA	BPF_CO_CCA	B0 0x5D	
Demodulator DC level adjustment	IFF_ADJ_H	B0 0x5E	
•	IFF_ADJ_L	B0 0x5F	
Demodulator DC level adjustment	IFF_ADJ_CCA_H	B0 0x60	
during CCA	IFF_ADJ_CCA_L	B0 0x61	
Demodulator adjustment1	DEMOD_SET1	B1 0x57	
Demodulator adjustment2	DEMOD_SET2	B1 0x58	
Demodulator adjustment3	DEMOD_SET3	B1 0x59	
Demodulator adjustment4	DEMOD_SET4	B1 0x5A	
Demodulator adjustment5	DEMOD_SET5	B1 0x5B	
Demodulator adjustment6	DEMOD_SET6	B1 0x5C	
Demodulator adjustment7	DEMOD_SET7	B1 0x5D	
Demodulator adjustment8	DEMOD_SET8	B1 0x5E	
Demodulator adjustment9	DEMOD_SET9	B1 0x5F	

Interrupt generation function

ML7406 support interrupt generation function. When interrupt occurs, interrupt notification signal (SINTN) become "L" to signal interrupt to the Host. Interrupt elements are divided in to the 3 groups, [INT_SOURCE_GRP1: B0 0x0D], [INT_SOURCE_GRP2: B0 0x0E] and [INT_SOURCE_GRP3: B0 0x0F]. Each interrupt element can be maskalable using [INT_EN_GRP1: B0 0x10]. [INT_EN_GRP2: B0 0x11] and [INT_EN_GRP3: B0 0x12] registers. Interrupt notification signal (SINTN) can be output from GPIO* or EXT_CLK. For output setting, please refer to [GPIO1_CTRL: B0 0x4E], [GPIO1_CTRL: B0 0x52] registers.

(Note)

If one of the unmask interrupt event occurs, SINTN maintains Low.

(1) Interrupt events table

Each interrupt event is described below table.

Register	Interrupt name	Description
	INT[0]	Clock stabilizaion completion interrupt
	INT[1]	VCO calibration completion interrupt/
	וויוווו	FUSE access completion interrupt
	INT[2]	PLL unlock interrupt
INT_SOURCE_GRP1	INT[3]	RF state transition completion interrupt
	INT[4]	FIFO-Empty interrupt
	INT[5]	FIFO-Full interrupt
	INT[6]	Wake-up timer completion interrupt
	INT[7]	Clock calibration completion interrupt
	INT[8]	RX completion interrupt
	INT[9]	CRC error interrupt
	INT[10]	Diversity search completion interrupt
INT SOURCE GRP2	INT[11]	RX Length error interrupt
INI_SOURCE_GRI Z	INT[12]	RX FIFO access error interrupt
	INT[13]	SyncWord detection interrupt
	INT[14]	Field checking interrupt
	INT[15]	Sync error interrupt
	INT[16]	TX completion interrupt
	INT[17]	TX Data request accept completion interrupt
	INT[18]	CCA completion interrupt
INT_SOURCE_GRP3	INT[19]	TX Length error interrupt
	INT[20]	TX FIFO access error interrupt
	INT[21]	Reserved
	INT[22]	General purpose timer 1 interrupt
	INT[23]	General purpose timer 2 interrupt

(2) Interrupt generation timing

In each interrupt generation, timing from reference point to interrupt generation (notification) are described in the following table. Timeout procedure for interrupt notification waiting are also described below.

(Note)

(1) The values are described in units of "bit cycle" in the below tablee is the value at 100kbps. If using other data rate,, please esitimate with appropriate "bit cycle".

(2)Below table uses the following format for TX/RX data.

10 byte	2 byte	1 byte	24 byte	2byte
Preamble	SyncWord	Length	User data	CRC

(3)Even if each interrupt notification is masked, in case of interrupt occurrence, interrupt elements are stored internally. Therefore, as soon as interrupt notification is unmasked, interrupt will generate.

	Interrupt notice	Reference point	Timing From reference point to interrupt generation or interrupt generation timing
INT[0]	CLK stabilization completion	RESETN release (upon power-up)	50µs
		SLEEP release (recovered from SLEEP)	50μs
INT[1]	VCO calibration completion	VCO calibration start	230µs
	FUSE access completion	RESETN release	48µs
INT[2]	PLL unlock detection	-	(TX) during TX after PA enable. (RX) during RX enable after RX enable.
INT[3]	RF state transition completion	TX_ON command	(IDLE) 210μs (RX) 192μs
		RX_ON command	(IDLE) 119μs (RX) 244μs
		TRX_OFF	(TX) 147μs
		command	(RX) 4µs
		Force_TRX_OFF	(TX) 147µs
		Command	(RX) 4µs
INT[4]	FIFO-Empty detection	(TX) TX_ON command	NRZ coding, Empty trigger level is set to 0x02. RFwake-up(210µs)+35byte(preamble to 22 nd Data byte) ×8bit ×
		(*1)	10(bit cycle) =3010μs
		(RX) -	By FIFO read, remaining FIFO data is under trigger level
INT[5]	FIFO-Full detection	(TX) -	By FIFO write, FIFO usage exceed trigger level
		(RX)	NRZ coding, Full trigger level is set to 0x05.
INITIO	Make up times	SyncWord detection SLEEP setting	6byte (Length to 5 th Data byte) ×8bit ×10μs(bit cycle) = 480μs Wake-up timer is completed.
INT[6]	Wake-up timer completion	SLEEP setting	For details, please refer to "wake-up timer"
INT[7]	Clock calibration	Calibration start	Calibration timer is completed.
1141[7]	completion	Calibration Start	For details, please refer to "low speed clock shift detection
	Compiction		function".
INT[8]	RX completion	SyncWord detection	NRZ coding
[0]	1 o t completion	Synorrora actocación	27byte (L-ength to CRC) ×8bite ×10(bit cycle)=2160µs
INT[9]	CRC error detection	SyncWord detection	(Format A/B) each RX CRC block calculation completion (Format C) RX completion
INT[10]	Diversity search completion	-	SyncWord detection during diversity enable setting
INT[11]	RX Length error	SyncWord detection	80µs (L-field 1byte)
	detection	,	160µs (L-field 2byte)
INT[12]	RX FIFO access error	-	(1)overflow occurs because FIFO read is too slow.
	detection		(2)underflow occurs because too many FIFO data is read
INT[13]	SyncWord detection	-	SyncWord detection
INT[14]	Field check completion	-	Match or mismatch detected in Field check

^(*1) Before issuing TX_ON, writing full length TX data to the TX_FIFO.

	Interrupt notice	Reference point	Timing From reference point to interrupt generation or interrupt generation timing
INT[15]	Sync error detection	-	During RX after SyncWord detection, out-of-sync detected. (When RXDIO_CTRL[1:0] ([DIO_SET: B0 0x0C(7-6)]) =0b00 or 0b11.)
INT[16]	TX completion	TX_ON command (*1)	RF wake-up+[TX data+3](bit) =210µs+(39byte ×8 +3) bit × 10µs (bit cycle)=3360µs after
INT[17]	TX Data request accept completion	-	After full length data are written to the TX_FIFO.
INT[18]	CCA completion	CCA execution start	(1)Normal mode (ED value calculation averaging times +IDLE_WAIT setting [IDLE_WAIT_H/L:B0 0x3B,3C]) *AD conversion time (2) IDLE detection mode IDLE judgment case (ED value calculation averaging times +IDLE_WAIT setting [IDLE_WAIT_H/L:B0 0x3B,3C]) *AD conversion time BUSY judgment case (ED value calculation averaging times) *AD conversion time AD conversion time period can be changed by AD clock frequency ([ADC_CLK_SEL:B1 0x08]) . AD clock frequency = 1.88MHz: 17.7µs, 2.0MHz: 16µs. For details, please refer to the "CCA (Clear Channel Assessment) function".
INT[19]	TX Length error detection	-	After set length value to [TX_PKT_LEN_H/L: B0 0x7A/7B] registers
INT[20]	TX FIFO access error detection	-	(1) When the next packet data is writren to the TX_FIFO before transmitting previous packet data. (2) FIFO overflow when writing (3) FIFO underflow (no data) when transmitting
INT[21]	Reserved	-	-
INT[22]	General purpose timer 1 completion	Timer start	General purpose timer 1 completion General purpose timer clock cycle ×Division setting [GT_CLK_SET: B0 0x33] × general purpose timer interval setting [GT1_TIMER:B0 0x34] For details, please refer to the "General purpose timer".
INT[23]	General purpose timer 2 completion	Timer start	General purpose timer 2 completion General purpose timer clock cycle ×Division setting [GT_CLK_SET: B0 0x33] × general purpose timer interval setting [GT2_TIMER:B0 0x35] For details, please refer to the "General purpose timer".

^(*1) Before issuing TX_ON, writing full length TX data to the TX_FIFO.

(3) Clearing interrupt conditions

The following table shows the condition of clearing each intercupt. As a procedure to clear the interrup, it is recommended that the interrupt to be cleared after masking the interrupt.

	Interrupt notification	Conditions for clearing interrupts
INT[0]	CLK stabilization completion	After interrupt generated
INT[1]	VCO calibration completion	After interrupt generated
	/FUSE access completion	
INT[2]	PLL unlock	After interrupt generated
INT[3]	RF state transition completion	After interrupt generated
INT[4]	FIFO-Empty	After interrupt generated
		(must clear before next FIFO-Empty trigger timing)
INT[5]	FIFO-Full	After interrupt generated
		(must clear before next FIFO-Full trigger timing)
INT[6]	Wake-up timer completion	After interrupt generated
INT[7]	Clock calibration completion	After interrupt generated
INT[8]	RX completion	After interrupt generated
INT[9]	CRC error	After interrupt generated
INT[10]	Diversity search completion	After RX completion interrupt (INT[8]), must clear
		together with RX completion interrupt.
		(Note) During data reception, clearing is prohibited.
INT[11]	RX Length error	After interrupt generated
INT[12]	RX FIFO access error	After interrupt generated
INT[13]	SyncWord detection	After interrupt generated
INT[14]	Field checking	After interrupt generated
INT[15]	Sync error	After interrupt generated
INT[16/]	TX completion	After interrupt generated
INT[17]	TX Data request accept completion	After interrupt generated
INT[18]	CCA completion	After interrupt generated
		(Note) clearing interrupt erase CCA result as well.
INT[19]	TX Length error	After interrupt generated
INT[20]	TX FIFO access error	After interrupt generated
INT[21]	Reserved	
INT[22]	General purpose timer 1	After interrupt generated
INT[23]	General purpose timer 2	After interrupt generated

Temperature measurement function

ML7406 has temperature measurement function. This temperature information can be from A_MON pin (pin#23) as analog output or digital information using[TEMP: B1 0x09] register. Analog or digital can be switched by [MON_CTRL: B0 0x4D] register.

(Note)

Please do not set TEMP_OUT([MON_CTRL: B0 0x4D(4)]) and TEMP_ADC_OUT([MON_CTRL: B0 0x4D(5)]) at the same time. Correct value reading may not be guaranteed.

[Analog output]

ML7406 has current source circuits and its current flow through $75k\Omega$ connected to A_MONpin (pin#23). From voltage information, temperature information can be obtained.

Current from current source circuits are 10µA at 25°C. The following formula can be used to calculate temperature from the current.

Itemp =
$$(273+ Temp) / (273+25) * 10 (\mu A)$$

Therefore, if $75k\Omega$ resister is connected, temperature can be calculated using the following formula.

If temperature is -40°C to 85°C, Vamon will be 0.59V to 0.9V.

The following formula can be used to calculate temperature from voltage.

[Digital output]

Digital temperature information is using 6 bit ADC to convert from the above analog information. Internally, 4samples information are added and indicates as 8bit information in [TEMP: B1 0x09] register. Ignoring low 2 bits, upper 6bitare used for average temperature information.

Temperature information is updated every 16μs([ADC_CLK_SET: B1 0x08] register. If 1.73MHzis selected, it is updated every 18.5μs.

Low speed clock shift detection function

ML7406 has low speed shift detection function to compensate inaccurate clock generated by RC oscillator (external clock or internal RC oscillation circuits). By detecting frequency shift of the wake up timer, host can set wake-up timer parameters which taking frequency shift into consideration. More accurate timer operation is possible by adjusting wake-up timer interval setting ([WUT_INTERVAL_H/L: B0 0x2F/0x30]) or continuous operation timer interval ([WU_DURATION: B0 0x31]).

Setting	Register
Frequency shift detection clock frequency setting	[CLK_CAL_SET: B0 0x70]
Clock calibration time	[CLK_CAL_TIME: B0 0x71]
Clock calibration result value	[CLK_CAL_H: B0 0x72], [CLK_CAL_L: B0 0x73]

This function is to measure low speed wake-up timer cycle by using accurate high speed internal clock and count result will be stored in [CLK CAL H/L: B0 0x72/0x73] registers. Above setting and count numbers are as follows:

```
High speed clock counter = {Wakeup timer clock cycle[SLEEP/WU_SET:B0 0x2D(2)] *
Clcok calibration time setting ([CLK_CAL_TIME:B0 0x71(5-0)]) /
{master clock cycle (26MHz) / clock division setting value ([CLK_CAL_SET: B0 0x70(7-4)])}
```

Clock calibration time is as follows:

Clock calibration time[s] = Wakeup timer clock cycle * Clock calibration time setting

[Example]

Assuming no division in the internal high speed clock, calibration time is set as 10 cycle. Set 1,000 to Wake-up interval timer:

```
condition: wake-up timer clock frequency = 32.768kHz
detection clock division setting CLK_CAL_DIV[3:0][CLK_CAL_SET: B0 0x70(7-4)] = 0b0000
clock calibration time setting [CLK_CAL_TIME] = 0x0A
wake-up timer interval [WUT_INTERVAL_H/L:B0 0x2F,30] = 0x03E8
```

```
Theorical high speed clock count = (1/32.768\text{kHz}) * 10 / (1/26\text{MHz})
= 7934(0x1\text{EFE})
```

```
If getting [CLK_CAL_H/L:B0 0x72,73] = 0x1E17 (7703)
```

Counter difference = 7703 - 7934 = -231

```
Frequency shift = 1/[\{1/32.768\text{kHz} + (-231) / 10 * 1/26\text{MHz}\} - 1/32.768\text{kHz}] = 0.983 \text{ kHz}
```

Then finding wake-up timer clock frequency accuracy is +3% higher. And the compensation vale (C) is calcurared as below:

```
C= Wake-up timer interval([WUT_INTERVAL_H/L:B0 0x2F,30]) * frequecy shift / 32.768 = 1000 * 0.983kHz / 32.768kHz = 30
```

Therefore, setting [WUT_INTERVAL_H/L:B0 0x2F,30] = 1000 +30 = 1030 = 0x0406 to achive more accurate inteval timinig.

(Note)

If calibration time is too short or if high speed counter is divided into low speed clock, calibration may not be accurate.

■LSI adjustment items and adjustment method

•PA adjustment

ML7406 has output circuits for 1mW and 20mW (10mW as well). Output circuits can be selected by PA_MODE[1:0] ([PA_MODE: B0 0x67(5-4)]).

PA_MODE[1:0]	Output circuit
0b00	1mW
0b01	10mW
0b10	20mW
0b11	Not allowed

Output power can be adjusted by the following 3 registers.

Coarse adjustment 1 PA_REG[3:0] ([PA_MODE: B0 0x67(3-0)]) 16 resolutions PA_ADJ[3:0] ([PA_ADJ: B0 0x69(3-0)]) 16 resolutions

Fine adjustment PA REG FINE ADJ[4:0] ([PA REG FINE ADJ: B0 0x68(4-0)]) 32 resolutions

Coarse adjustment 1: PA regulator voltage adjustment

Setting regulator voltage according to the desired output level.

However, please set PA regulator voltage to less than [VDD_PA(pin#22) – 0.3V].

iator voltage to less than [
PA regulator voltage[V]
1.20
1.32
1.44
1.56
1.68
1.80
1.92
2.04
2.16
2.28
2.40
2.52
2.64
2.76
2.88
3.00

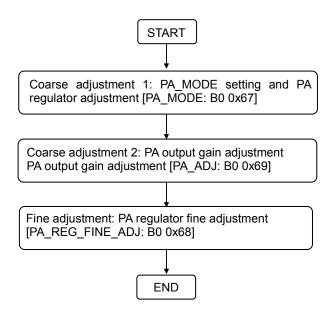
Coarse adjustment 2: PA output gain adjustment

Controlling output power by adjusting PA gain. Adjustment steps are 0.4dB to 1.5dB.

[PA_ADJ: B0 0x69]=0x0F: output PA gain maximum.

[PA_ADJ: B0 0x69]=0x00: output gain minimum.

Fine adjustment: PA regulator voltage fine adjustment


Fine tuning output power by adjusting PA regulator voltage. Adjustment step is less than 0.2dB.

[PA_REG_FINE_ADJ B0 0x68]=0x1F: maximum [PA_REG_FINE_ADJ B0 0x68]=0x00: minimum

(Note)

In order to achieve the most optimized result, Matching circuits may vary depending on the output mode.

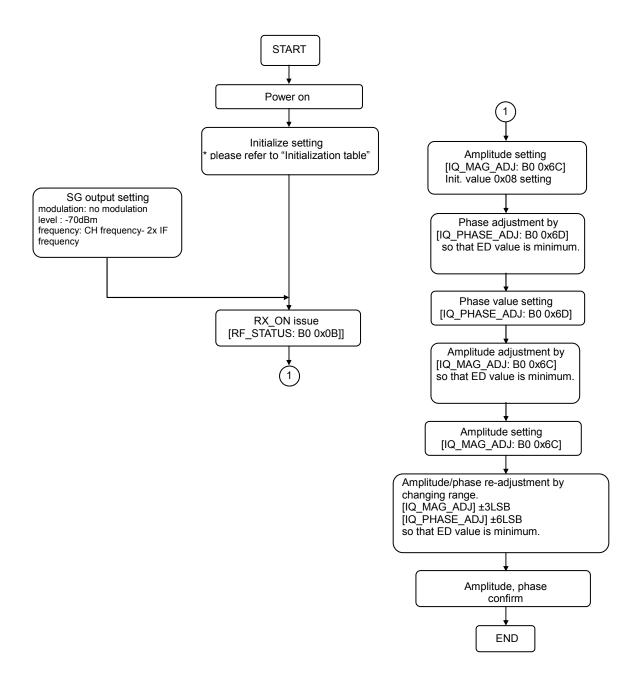
oPA output adjustment flow

•I/Q adjustment

Image rejection ratio can be adjusted by tuning IQ signal balance. The adjustment procedure is as follows:

1. From SG, image frequency signal is input to ANT pin.

Input signal source: no modulation.wave

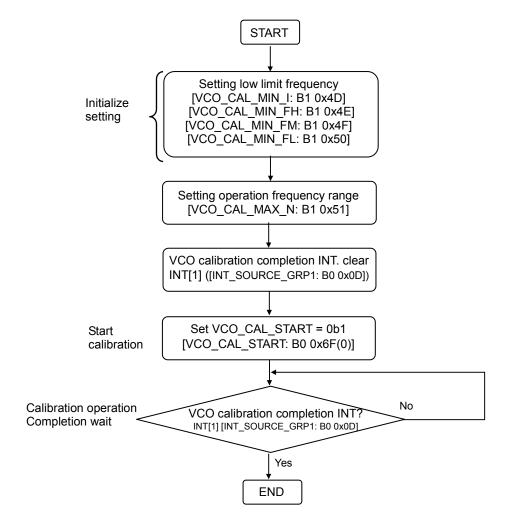

Input frequency: channel frequency - (2×IF frequency)

In case of 100kbps, IF frequency = 720kHz: please refer to the "IF frequency setting".

Input level: -70dBm

2. Issuing RX_ON by [RF_STATUS:B0 0x7B] register, by adjusting [IQ_MAG_ADJ: B0 0x6C] and [IQ_PHASE_ADJ: B0 0x6D] registers, Finding setting value so that ED value [ED_RSLT: B0 0x3A] is minimum.

o I/Q adjustment flow



VCO adjustment

In order to compensate VCO operation margin, optimized capacitance compensation value should be set in each TX/RX operation and frequency. This capacitance compensation value can be acquired by VCO calibration. By performing VCO calibration when power-up or reset, acquired capacitance compensation values for upper limit and lower limit of operation frequency range (for both TX/RX), based on this value optimised capacitance value is applied during TX/RX operation.

VCO adjustment flow

The following flow is the procedure for acquiring capacitance compensation value when power-up or reset.

(Note)

VCO calibration should be performed only during IDLE state.

VCO calibration is necessary every 0.6ms to 3.9ms.

After completion, capacitance compensation values are stored in the following registers.

Capacitance compensation value at low limit frequency: [VCAL_MIN: B1 0x52]

Capacitance compensation value at upper limit frequency: [VCAL_MAX: B1 0x53]

In actual operation, based on the 2 compensation values, the most optimized capacitance value for the frequency is calculated and applied. The calculated value is stored in [VCO_CAL: B0 0x6E].

By evaluation stage, if below values are stored in the MCU memory and uses these values upon reset or power-up, calibration operation can be omitted.

Registers to be saved in the MCU memory.

```
[VCO_CAL_MIN_I: B1 0x4D]

[VCO_CAL_MIN_FH: B1 0x4E]

[VCO_CAL_MIN_FM: B1 0x4F]

[VCO_CAL_MIN_FL: B1 0x50]]

[VCO_CAL_MAX_N: B1 0x51]

[VCAL_MIN: B1 0x52]

[VCAL_MAX: B1 0x53]
```

(Note)

- 1. For low limit frequency, please use frequency at least 2.2MHz lower than operation frequency.
- 2. Upper limit frequency should be selected so that operation frequency is in the frequency range.
- 3. In case of like a channel change, if the setting frequency is outside of calibration frequency range, calibration has to be performed again with proper frequency.
- 4. If PLL unlock occures, PLL unlock interrupt (INT[02] group1) will geneate. The following shows the ML7406 operation related with LSI state and PLL_LD_EN([PLL_LOCK_DETECT:B1 0x0B(7)]) setting, after interrupt generation.

LSI	check timig of	PLL lock detection control setting and ML	7406 operation after interrupt generation
state	PLL unlock detection	PLL_LD_EN=0b1 PLL_LD_EN=0b0 [PLL_LOCK_DETECT:B1 0x0B(7)] [PLL_LOCK_DETECT:B1 0x0B(7)]	
TX	PA_ON ="H"	interrupt occurs and TX stops forcibly	interrupt occurs and TX is continued
RX	RX enable ="H"	interrupt occurs and RX is continued	interrupt occurs and RX is continued

oVCO low limit frequency setting

VCO low limit frequency can be set as described in the "channel frequency setting". I is set to [VCO_CAL_MIN_I:B0 0x4D] register, F is set to [VCO_CAL_MIN_FH:B0 0x4E], [VCO_CAL_MIN_FM:B0 0x4F], [VCO_CAL_MIN_FL:B0 0x50] registers in MSB – LSB order.

example) If operation low limit frequency is 870MHz, setting value should be lower than 2.2MHz, Then in following example, low limit frequency is set to 866MHz, master clock frequency is 26MHz.

```
I = 866 \text{MHz}/26 \text{MHz} (Integer part) = 33(0x21)

F = (866 \text{MHz}/26 \text{MHz}-33) \times 2^{20} (Integer part) = 12905550 (0xC4EC4E)
```

Setting values for each register is as follows:

```
[VCO_CAL_MIN_I] = 0x21

[VCO_CAL_MIN_FH] = 0xC4

[VCO_CAL_MIN_FM] = 0xEC

[VCO_CAL_MIN_FL] = 0x4E
```

oVCO upper limit frequency setting

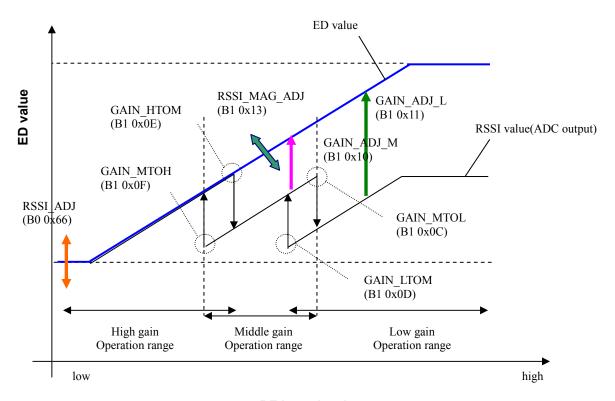
VCO upper limit frequency is calculated as following formula, based on low limit frequency value and VCO_CAL_MAX_N[3:0] ([VCO_CAL_MAX_N: B1 0x51(3-0)]).

VCO calibration upper limit frequency = VCO calibration low limit frequency (B1 0x4E-0x50) + $\Delta F(B1 0x51)$

 ΔF is defined in the table below.

VCO_CAL_MAX_N[3:0]	ΔF[MHz]
0b0000	0
0b0001	0.8125
0b0010	1.625
0b0011	3.25
0b0100	6.5
0b0101	13
0b0110	26
0b0111	52
0b1000	82.875
0b1001	104
Other than above	prohibited

• Energy detection value (ED value) adjustment


[ED value adjustment]

ED value is calculated by RSSI signal (analog signal) from RF part,. By performing the following adjustment, it is possible to correct the variation in LSIs.

The gain adjustment and related registers are described below.

In order to cover wider input range, gain should be changed at given point. Threshold for gain change points are set to [GAIN_LTOM: B1 0x0C], [GAIN_MTOH: B1 0x0F]. [GAIN_ADJ_M: B1 0x10] and [GAIN_ADJ_L: B1 0x11] registers are used to addition values to maintain linearity when changing gain. RSSI slope can be set to [RSSI_MAG_ADJ: B1 0x13] register so that ED value can be between 0x00(min) and 0xFF(max). Please set to these registers based on the "Initialization table", do not change the setting for these registers for tuning.

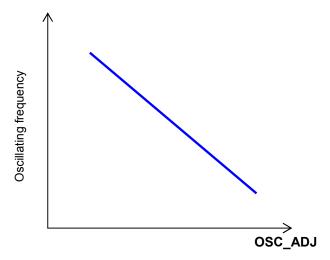
Adjusting the input level variation for the same input level can be set to [RSSI_ADJ: B0 0x66] register. It must compensate the slope before compensation defined by [RSSI_MAG_ADJ:B0 0x13] register. However, if positive value is set, ED value cannot be decreased down to 0x00 at low input signal level. If negative value is set, ED value cannot be increased up to 0xFF.

RF input level

Operation in the High gain range: Operation in the Middle gain range:

Operation in the Low gain range:

RSSI value>GAIN_HtoM, and move to Middle gain. RSSI value>GAIN_MtoL, and move to Low gain. GAIN_MtoH≥RSSI value, and move to High gain. GAIN_LtoM≥RSSIvalue, and move to Middle gain.


•Oscillation circuit adjustment

In case of using a crystal oscillator (ML7406C), crystal oscillator frequency deviation can be tuned by adjusting load capacitance of XIN pin (pin#5) and XOUT pin (pin #6). Load capacitance can be adjusted by [OSC_ADJ1: B0 0x62] and [OSC_ADJ2: B0 0x63].

Adjustable capacitance is as follows:

[OSC ADJ1] Coarse adjustment of load capacitance: 0.7pF/step (setting range: 0x00 to 0x0F)

[OSC_ADJ2] Fine adjustment of load capacitance: 0.02pF/step (setteing range: 0x00 to 0x77)

■Resister setting

•Initilaization table

ML7406needs initilaization. For the value to each register, please refer to the "ML7406 Initilaization Table" document and "ML7406_RegisterSettingTool".

•BER measurement setting

The following registers setting are necessary for RX side when BER measurement equipment is connected.

[DIO_SET: B0 0x0C] = 0x40[MON_CTRL: B0 0x4D] = 0x80

[GPIO0_CTRL: B0 0x4F] to [GPIO3_CTRL: B0 0x52] for setting DCLK/DIO output pins.

 $[GAIN_HTOM: B1\ 0x0E] = 0x1E$

When termiate BER measurement and reurn from RX state, Force TRX_OFF should be issued by $SET_TRX[3:0]$ ([RF_STATUS:B0 0x0b(3-0]) =0b0011.

•Wireless M-Bus mode setting

The following parameter tables are example for programing each Wireless M-Bus mode (S/T/R/C).

 $\circ Mode \ S$

TX/RX parameter	Registe			direction
17010 C paramotor	name	address	MeterToOther	OtherToMeter
	TXFREQ_I	B1 0x1B	0x21	←
TX frequency	TXFREQ_FH	B1 0x1C	0x06	←
17t Hoquonoy	TXFREQ_FM	B1 0x1D	0x56	←
	TXFREQ_FL	B1 0x1E	0xA5	←
	RXFREQ_I	B1 0x1F	0x21	←
RX frequency	RXFREQ_FH	B1 0x20	0x06	←
	RXFREQ_FM RXFREQ_FL	B1 0x21 B1 0x22	0x56 0xA5	←
Data rate	DRATE_SET	B0 0x06	0x88	← ←
	DRATE_SET	DU 0X00	UXOO	
Preamble pattern/ Modulation scheme/coding scheme	DATA_SET1	B0 0x07	0x00	←
Searching two SyncWords	DATA_SET2	B0 0x08	0x00	←
Frequency deviation (GFSK)	GFSK_DEV_H	B1 0x30	-	-
r requerity deviation (or ort)	GFSK_DEV_L	B1 0x31	-	-
	FSK_DEV0_H/GFIL0	B1 0x32	0x07	←
	FSK_DEV0_L/GFIL1	B1 0x33	0xE0	←
	FSK_DEV1_H/GFIL2	B1 0x34	0x07	←
	FSK_DEV1_L/GFIL3	B1 0x35	0xE0	←
Frequency deviation (FSK)	FSK_DEV2_H/GFIL4	B1 0x36	0x07	←
requested derivation (i. 5.1)	FSK_DEV2_L/GFIL5	B1 0x37	0xE0	←
	FSK_DEV3_H/GFIL6	B1 0x38	0x07	←
	FSK_DEV3_L	B1 0x39	0xE0	←
	FSK_DEV4_H	B1 0x3A	0x07	←
	FSK_DEV4_L	B1 0x3B	0xE0	←
	FSK_TIM_ADJ4	B1 0x3C	0x04	←
Francisco deviction time (FCK)	FSK_TIM_ADJ3	B1 0x3D	0x04	←
Frequency deviation time (FSK)	FSK_TIM_ADJ2	B1 0x3E	0x04	←
	FSK_TIM_ADJ1	B1 0x3F	0x04 0x04	←
	FSK_TIM_ADJ0	B1 0x40		←
Preamble length	TXPR_LEN_H	B0 0x42	0x00 0x0F	←
Criss NA and Law with	TXPR_LEN_L	B0 0x43		←
SyncWord length	SYNC_WORD_LEN	B1 0x25	0x12	←
	SYNC_WORD1_SET0	B1 0x27 B1 0x28	0x00 0x00	←
SyncWord pattern1	SYNC_WORD1_SET1 SYNC WORD1 SET2	B1 0x28 B1 0x29	0x00 0x76	←
•	SYNC_WORD1_SET2 SYNC_WORD1_SET3	B1 0x2A	0x76 0x96	←
	SYNC_WORD1_SET3	B1 0x2B	0,00	←
	SYNC_WORD2_SET1	B1 0x2C		-
SyncWord pattern2	SYNC_WORD2_SET2	B1 0x2D	-	-
	SYNC_WORD2_SET3	B1 0x2E	_	_
Postamble setting	POSTAMBLE_SET	B0 0x44	0x11	←
	IF_FREQ_H	B0 0x54	0x11 0x27	<u>←</u>
IF frequency setting	IF_FREQ_L	B0 0x55	0x62	←
	IF_FREQ_CCA_H	B0 0x56	0x27	· ←
IF frequency during CCA	IF_FREQ_CCA_L	B0 0x57	0x62	<u>←</u>
BPF coefficient	BPF_CO	B0 0x5C	0x88	←
BPF coefficient during CCA.	BPF CO CCA	B0 0x5D	0xB8	· ←
Demodulator DC level adjustment	IFF_ADJ_CCA_H	B0 0x60	0x3A	
	IFF_ADJ_CCA_H	B0 0x61	0x20	← ←
during CCA.				
Demodulator adjustment 1	DEMOD_SET1	B1 0x57	0x15	←
Demodulator adjustment 2	DEMOD_SET2	B1 0x58	0x3A	←
Demodulator adjustment 3	DEMOD_SET3	B1 0x59	0x20	←
Demodulator adjustment 4	DEMOD_SET4	B1 0x5A	0x2A	←
Demodulator adjustment 5	DEMOD_SET5	B1 0x5B	0x6A	←
Demodulator adjustment 6	DEMOD_SET6	B1 0x5C	0x25	←
Demodulator adjustment 7	DEMOD_SET7	B1 0x5D	0x2C	←
Demodulator adjustment 8	DEMOD_SET8	B1 0x5E	0x02	←
Demodulator adjustment 9	DEMOD_SET9	B1 0x5F	0x89	
Demodulator adjustment 9	DEIMOD 2E18	ם ו טגטר	UXO9	←

 $\circ \text{Mode } T$

TX/RX parameter	Registe		Comms.	
17010X parameter	name	address	MeterToOther	OtherToMeter
	TXFREQ_I	B1 0x1B	0x21	←
TX frequency	TXFREQ_FH	B1 0x1C	0x06	←
1X frequency	TXFREQ_FM	B1 0x1D	0xBD	0x56
	TXFREQ_FL	B1 0x1E	0x0B	0xA5
	RXFREQ_I	B1 0x1F	0x21	←
RX frequency	RXFREQ_FH	B1 0x20	0x06	←
RA frequency	RXFREQ_FM	B1 0x21	0x56	0xBD
	RXFREQ_FL	B1 0x22	0xA5	0x0B
Data rate	DRATE_SET	B0 0x06	0x8B	0xB8
Preamble pattern/ Modulation scheme/coding scheme	DATA_SET1	B0 0x07	0x02	0x08
Select SyncWord pattern/ Searching two SyncWords	DATA_SET2	B0 0x08	TX: 0x00 RX: 0x10	←
Frequency deviation (GFSK)	GFSK_DEV_H	B1 0x30	-	-
Frequency deviation (GFSK)	GFSK_DEV_L	B1 0x31	-	-
	FSK_DEV0_H/GFIL0	B1 0x32	0x07	←
	FSK_DEV0_L/GFIL1	B1 0x33	0xE0	←
	FSK DEV1 H/GFIL2	B1 0x34	0x07	←
	FSK DEV1 L/GFIL3	B1 0x35	0xE0	←
Farmer and designing (FOK)	FSK_DEV2_H/GFIL4	B1 0x36	0x07	←
Frequency deviation (FSK)	FSK DEV2 L/GFIL5	B1 0x37	0xE0	←
	FSK DEV3 H/GFIL6	B1 0x38	0x07	←
	FSK DEV3 L	B1 0x39	0xE0	←
	FSK DEV4 H	B1 0x3A	0x07	←
	FSK DEV4 L	B1 0x3B	0xE0	←
	FSK TIM ADJ4	B1 0x3C	0x04	←
	FSK TIM ADJ3	B1 0x3D	0x04	←
Frequency deviation time (FSK)	FSK TIM ADJ2	B1 0x3E	0x04	←
requested deviation and (i.e.t)	FSK TIM ADJ1	B1 0x3F	0x04	←
	FSK TIM ADJ0	B1 0x40	0x04	←
	TXPR LEN H	B0 0x42	0x00	←
Preamble length	TXPR LEN L	B0 0x43	0x13	0x0F
SyncWord length	SYNC_WORD_LEN	B1 0x25	TX: 0x0A RX: 0x12	TX: 0x12 RX: 0x08
	SYNC WORD1 SET0	B1 0x27	0x00	<i>←</i>
	SYNC WORD1 SET1	B1 0x28	0x00	←
SyncWord pattern 1(*1)	SYNC WORD1 SET2	B1 0x29	0x00	0x76
	SYNC WORD1 SET3	B1 0x2A	0x3D	0x96
	SYNC WORD2 SET0	B1 0x2B	0x00	→ —
	SYNC WORD2 SET1	B1 0x2C	0x00	
SyncWord pattern 2(*1)	SYNC WORD2 SET2	B1 0x2D	0x76	← 0x00
	SYNC WORD2_SET3	B1 0x2E	0x76	0x3D
Postamble setting	POSTAMBLE SET	B0 0x44	0x15	UX3D ←
	IF FREQ H	B0 0x54	0x15 0x27	0x38
IF frequency setting	IF FREQ L			
		B0 0x55 B0 0x56	0x62 0x27	0xB6 0x38
IF frequency during CCA.	IF_FREQ_CCA_H			
DDC#:-:	IF_FREQ_CCA_L	B0 0x57	0x62	0xB6
BPF coefficient	BPF_CO	B0 0x5C	0xB8	0x80
BPF coefficient during CCA.	BPF_CO_CCA	B0 0x5D	0xB8	0x80
Demodulator DC level adjustment	IFF_ADJ_CCA_H	B0 0x60	0x3A	0x1B
during CCA	IFF_ADJ_CCA_L	B0 0x61	0x20	0x01
Demodulator adjustment 1	DEMOD_SET1	B1 0x57	0x15	0x14
Demodulator adjustment 2	DEMOD_SET2	B1 0x58	0x3A	0x1B
Demodulator adjustment 3	DEMOD_SET3	B1 0x59	0x20	0x01
Demodulator adjustment 4	DEMOD_SET4	B1 0x5A	0x2A	0x21
Demodulator adjustment 5	DEMOD_SET5	B1 0x5B	0x6A	0xB2
Demodulator adjustment 6	DEMOD_SET6	B1 0x5C	0x25	0x26
Demodulator adjustment 7	DEMOD SET7	B1 0x5D	0x2C	0x37
Demodulator adjustment 8 Demodulator adjustment 9	DEMOD_SET8 DEMOD_SET9	B1 0x5E B1 0x5F	0x02 0x89	0x03

 $\circ Mode \ C$

TX/RX parameter	Registe		Comms.	
17010X parameter	Name	Address	Meter To Other	Other To Meter
	TXFREQ_I	B1 0x1B	0x21	←
TX frequency	TXFREQ_FH	B1 0x1C	0x06	0x07
1X frequency	TXFREQ_FM	B1 0x1D	0xBD	0x17
	TXFREQ_FL	B1 0x1E	0x0B	0xA1
	RXFREQ_I	B1 0x1F	0x21	←
DV fraguancy	RXFREQ_FH	B1 0x20	0x07	0x06
RX frequency	RXFREQ FM	B1 0x21	0x17	0xBD
	RXFREQ FL	B1 0x22	0xA1	0x0B
Data rate	DRATE SET	B0 0x06	0xAB	0xBA
Preamble pattern/	_			0.45
Modulation scheme/coding scheme	DATA_SET1	B0 0x07	0x05	0x15
Searching two SyncWord	DATA SET2	B0 0x08	0x08	←
	GFSK DEV H	B1 0x30	-	0x03
Frequency deviation (GFSK)	GFSK DEV L	B1 0x31	-	0xF0
	FSK DEV0 H/GFIL0	B1 0x32	0x07	0x49
	FSK DEV0_L/GFIL1	B1 0x33	0x16	0xA7
	FSK DEV1 H/GFIL2	B1 0x34	0x07	0x0F
	FSK DEV1_L/GFIL3	B1 0x35	0x16	0x14
	FSK DEV2 H/GFIL4	B1 0x36	0x10	0x19
Frequency deviation (FSK)	FSK DEV2 L/GFIL5	B1 0x37	0x16	0x1D
	FSK_DEV2_L/GFIL6	B1 0x38	0x10 0x07	0x1E
	FSK_DEV3_L	B1 0x39	0x16	-
	FSK_DEV4_H	B1 0x3A	0x07	-
	FSK_DEV4_L	B1 0x3B	0x16	-
	FSK_TIM_ADJ4	B1 0x3C	0x04	←
	FSK_TIM_ADJ3	B1 0x3D	0x04	←
Frequency deviation time (FSK)	FSK_TIM_ADJ2	B1 0x3E	0x04	←
	FSK_TIM_ADJ1	B1 0x3F	0x04	←
	FSK_TIM_ADJ0	B1 0x40	0x04	←
Preamble length	TXPR_LEN_H	B0 0x42	0x00	←
-	TXPR_LEN_L	B0 0x43	0x10	←
SyncWord length	SYNC_WORD_LEN	B1 0x25	0x20	←
	SYNC_WORD1_SET0	B1 0x27	0x54	←
SyncWord pattern1	SYNC_WORD1_SET1	B1 0x28	0x3D	←
Syncword pattern	SYNC_WORD1_SET2	B1 0x29	0x54	←
	SYNC_WORD1_SET3	B1 0x2A	0xCD	←
	SYNC_WORD2_SET0	B1 0x2B	0x54	←
Complete and another and	SYNC WORD2 SET1	B1 0x2C	0x3D	←
SyncWord pattern2	SYNC_WORD2_SET2	B1 0x2D	0x54	←
	SYNC WORD2 SET3	B1 0x2E	0x3D	←
Postamble setting	POSTAMBLE SET	B0 0x44	0x00	←
	IF_FREQ_H	B0 0x54	0x27	0x38
IF frequency setting	IF FREQ L	B0 0x55	0x62	0xB6
	IF FREQ CCA H	B0 0x56	0x27	0x38
IF frequency during CCA	IF FREQ CCA L	B0 0x57	0x62	0xB6
BPF coefficient	BPF CO	B0 0x5C	0xB8	0x80
BPF coefficient during CCA	BPF CO CCA	B0 0x5D	0xB8	0x80
Demodulator DC level adjustment	IFF ADJ CCA H	B0 0x60	0x1F	0x1B
during CCA	IFF_ADJ_CCA_H	B0 0x61	0x1F 0x04	0x15 0x01
Demodulator adjustment 1	DEMOD SET1	B1 0x57	0x04 0x15	0x01 0x14
	_			
Demodulator adjustment 2	DEMOD_SET2	B1 0x58	0x1F	0x1B
Demodulator adjustment 3	DEMOD_SET3	B1 0x59	0x04	0x01
Demodulator adjustment 4	DEMOD_SET4	B1 0x5A	0x13	0x21
Demodulator adjustment 5	DEMOD_SET5	B1 0x5B	0x7A	0xB2
Demodulator adjustment 6	DEMOD_SET6	B1 0x5C	0x23	0x26
Demodulator adjustment 7	DEMOD_SET7	B1 0x5D	0x2A	0x37
Demodulator adjustment 8	DEMOD_SET8	B1 0x5E	0x03	0x03
Demodulator adjustment 9	DEMOD SET9	B1 0x5F	0xAC	0xDB

●IEEE 802.15.4g setting

The following parameter tables are example for programing IEEE 802.15.4 format.

Common setting

(1) Whitening setting

Parameter	Register		Setting
Farameter	Name	Address	Value
Whitening initialized state (high 1 bit)	WHT_INIT_H	B1 0x64	0x00
Whitening initialized state (low byte)	WHT_INIT_L	B1 0x65	0xF0
Whitening polynomial	WHT_CFG	B1 0x66	0x10

$\circ TX$

(1) CRC 16, without Whitening

Parameter	Register	Setting	
Farameter	Name	Address	Value
Packet format	PKT_CTRL1	B0 0x04	0x16
CRC Length	PKT_CTRL2	B0 0x05	0x5D
Whitening enable	DATA_SET2	B0 0x08	0x00
Packet header (bit15-11)	TX_PKT_LEN_H(bit7-3)	B0 0x7A	0b0_0010

(2) CRC 16, with Whitening

Parameter	Register	Setting	
Farameter	Name	Address	Value
Packet format	PKT_CTRL1	B0 0x04	0x16
CRC Length	PKT_CTRL2	B0 0x05	0x5D
Whitening enable	DATA_SET2	B0 0x08	0x01
Packet header (bit15-11)	TX_PKT_LEN_H(bit7-3)	B0 0x7A	0b0_0011

(3) CRC 32, without Whitening

Parameter	Register	Setting	
Faiailletei	Name	Address	Value
Packet format	PKT_CTRL1	B0 0x04	0x16
CRC Length	PKT_CTRL2	B0 0x05	0xAD
Whitening enable	DATA_SET2	B0 0x08	0x00
Packet header (bit15-11)	TX_PKT_LEN_H(bit7-3)	B0 0x7A	0b0_0000

(4) CRC 32, with Whitening

Parameter	Register	Setting	
Farameter	Name	Address	Value
Packet format	PKT_CTRL1	B0 0x04	0x16
CRC Length	PKT_CTRL2	B0 0x05	0x5D
Whitening enable	DATA_SET2	B0 0x08	0x01
Packet header (bit15-11)	TX_PKT_LEN_H(bit7-3)	B0 0x7A	0b0_0001

\circ RX

By setting IEEE4G_EN([PKT_CTRL1:B0 0x04(2)])=0b1, ML7406 identifies the FCS and Whitening information from the receiving packet header (PHR).

Parameter	Register		Setting
Farameter	Name	Address	Value
Packet format	PKT_CTRL1	B0 0x04	0x16
CRC Length	PKT_CTRL2	B0 0x05	0x5D or 0xAD
Whitening enable	DATA_SET2	B0 0x08	0x01 or 0x00

■Flowchart

Category	Condition 1	Condition 2	Name of flow
Turn on	_	_	(1) Initialization flow
sequence			(1) Illicalization now
TX/RX common	_	_	(1) RF state transition wait
Sequence			` '
TX Sequence	DIO mode	-	TX (1) DIO mode
	FIFO mode	Under 64 byte	TX (2) FIFO mode
		65 byte or more (FAST_TX)	TX (3) FIFO mode
	Automatic TX	-	TX (4) automatic TX
RX Sequence	DIO mode	-	RX (1) DIO mode
	FIFO mode	Under 64 byte	RX (2) FIFO mode
		65 byte or mode	RX (3) FIFO mode
	ACK transmission	-	RX (4) ACK transmission
	Field check	-	RX (5) Field checking
	CCA	Normal mode	RX (6) CCA normal mode
		Continuous execution mode	RX (6) CCA continuous execution mode
		IDLE detection mode	RX (6) CCA IDLE detection mode
	High speed carrier checking	-	RX (7) high speed carrier checking
	ED-SCAN	-	RX (8) ED-SCAN
	Antenna diversity	Execute diversity	RX (9) antenna diversity
SLEEP	SLEEP	-	(1) SLEEP
Sequence	Wake-up timer	-	(2) Wake-up timer
Error Process	Sync error	-	(1) Sync error
	TX FIFO access error	-	(2) TX FIFO access error
	RX FIFO access error	-	(3) RX FIFO access error
	PLL unlock	-	(4) PLL unlock
Data Rate			
Change	-	-	(1) Change Data Rate
Sequence			

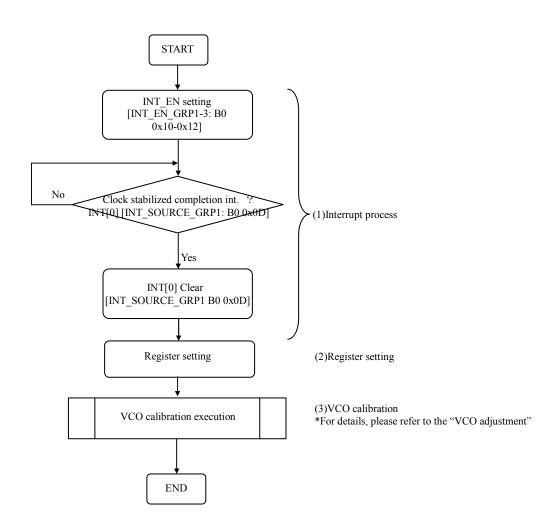
Turn on Sequence

(1) Initializing flow

In initialization status, Interrupt process, registers setting, VCO calibration are necessary.

(1) Interrupt process

Upon reset, all interrupt notification settings ([INT EN GRP1-3: B0 0x10-0x12]) are disabled.


After hard reset is released, INT[0] (group1: clock stabilization completion interrupt) and INT[1] (group1: VCO calibration completion / Fuse access completion interrupt) will be detected. INT[0] and INT[1] should be enabled by [INT_EN_GRP1:B0 0x10] register.

(2) Registers setting

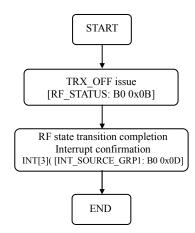
After hard reset is release, all registers in BANK0 and BANK1 except FIFO access registers ([WR_TX_FIFO: B0 0x7C] and [RD_FIFO: B0 0x7F]), are accessible before INT[0] notification.

(3) VCO calibration

VCO calibration is executed after setting upper and low limit of the operation frequency. For details, please refer to the "VCO adjustment"

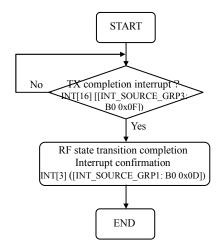
•TX/RX Common Sequence

(1) RF state transition wait

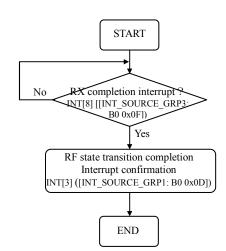

If below setting for RF state change is selected, please confirm the completion of RF state transtion by INT[3] (group1: RF state transition completion interrupt).

- oRF state transition by [RF_STATUS: B0 0x0B]
- oRF state transition by [RF_STATUS_CTRL: B0 0x0A]
 - •FAST_TX mode setting
 - •automatic TX setting
 - •RF state setting after TX completion
 - •RF state setting after RX completion
- ORF state modification by wake-up timer setting

i) TRX OFF flow

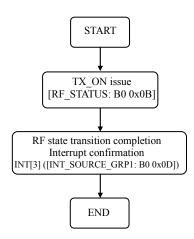

RF state change by [RF STATUS: B0 0x0B]

SET_TRX[3:0]=0b1000

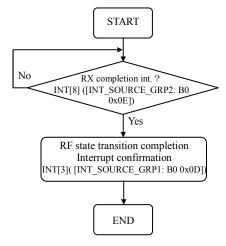


RF state change by [RF_STATUS_CTRL: B0 0x0A]

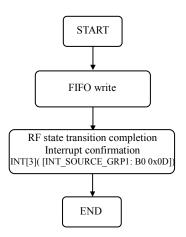
TXDONE_MODE[1:0=0b00


RXDONE_MODE[1:0]=0b00

ii) TX ON flow

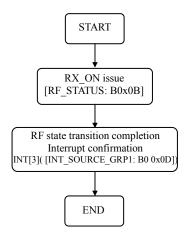

RF state transition change by [RF_STATUS: B0 0x0B]

SET_TRX[3:0]=0b1001

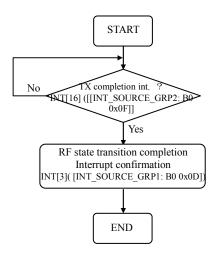


RF state transition by [RF_STATUS_CTRL]register(B0 0x0A)

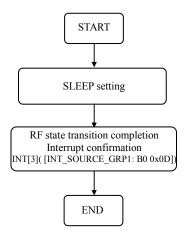
RXDONE_MODE[1:0]=0b10


FAST_TX_EN=0b1 and AUTO_TX_EN=0b1

iii) RX_ON flow

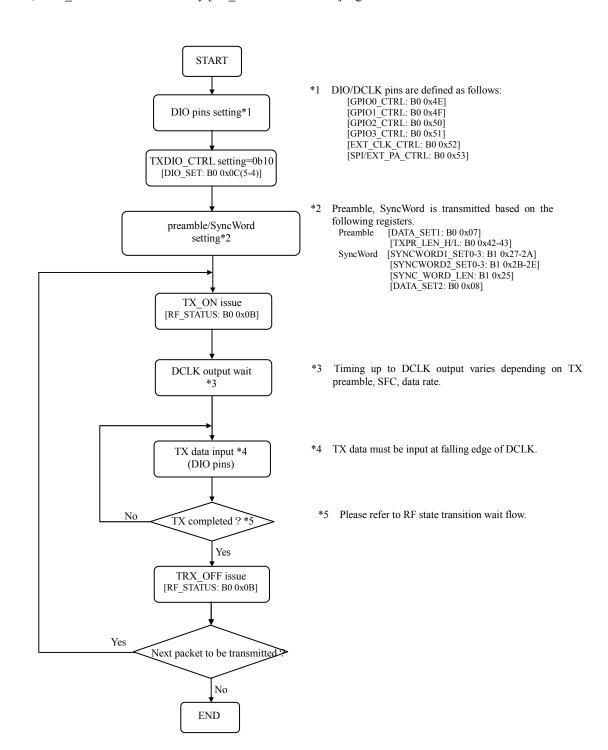

RF state change by [RF_STATUS: B0 0x0B]

SET_TRX[3:0]=0b0110

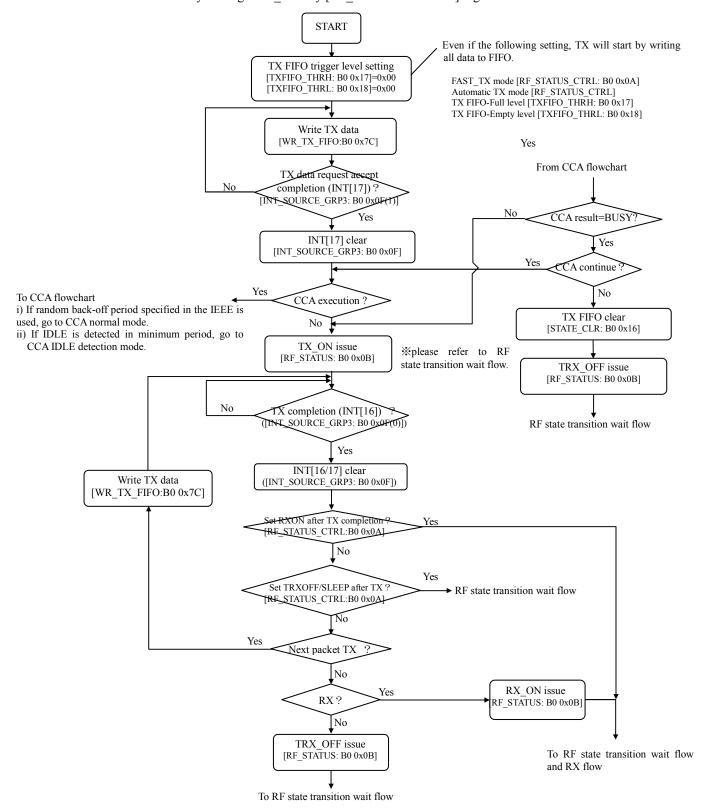

RF state change by [RF_STATUS_CTRL: B0 0x0A]

TXDONE_MODE[1:0]=0b10

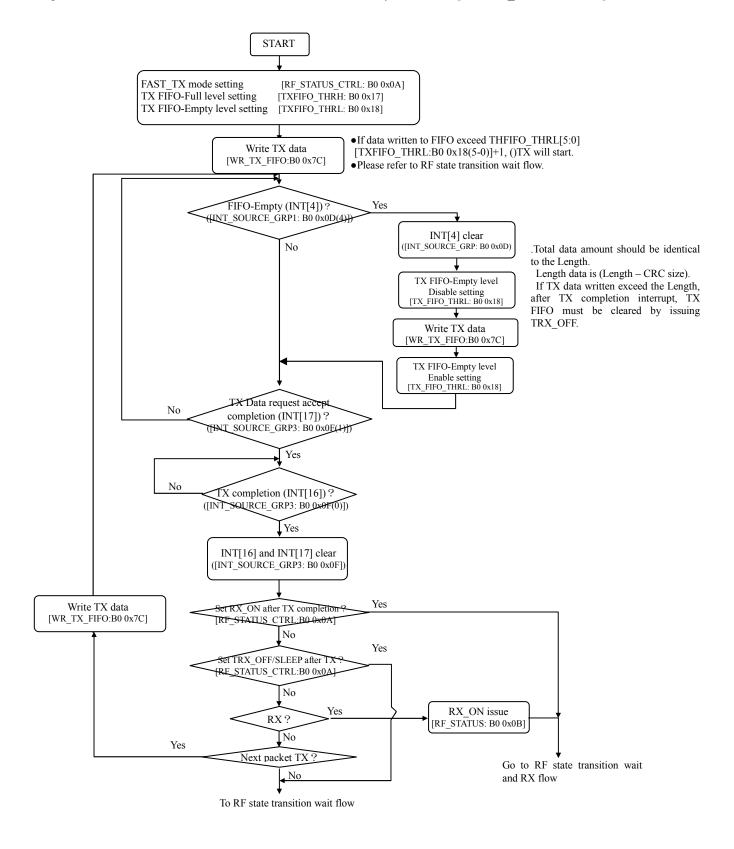
iv) Wake-up flow


The following flow doses not apply to the case when waiting for INT[13] (group 2: SyncWord detection interrupt.) after wake-up.

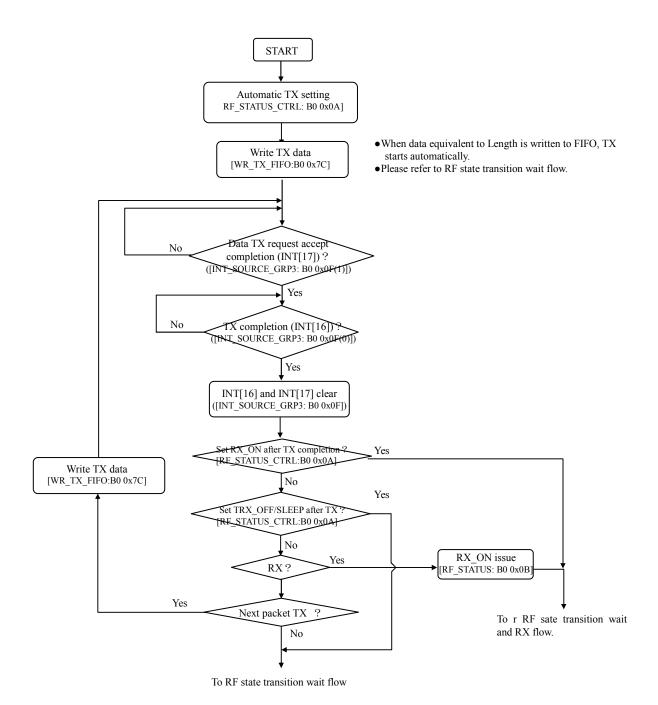
• TX Sequence


(1) DIO mode

DIO(TX) mode can be selected by setting TXDIO_CTRL[1:0]([DIO_SET: B0 0x0C(5-4)])=0b01 or 0b10. In DIO mode, when issuing TX_ON by [RF_STATU:B0 0x0B] register, data input on the pin related DIO will be transimitted to the air. After TX completion, TRX_OFF should be issued by [RF_STATUS:B0 0x0B] register.


(2) FIFO mode (less than 64byte)

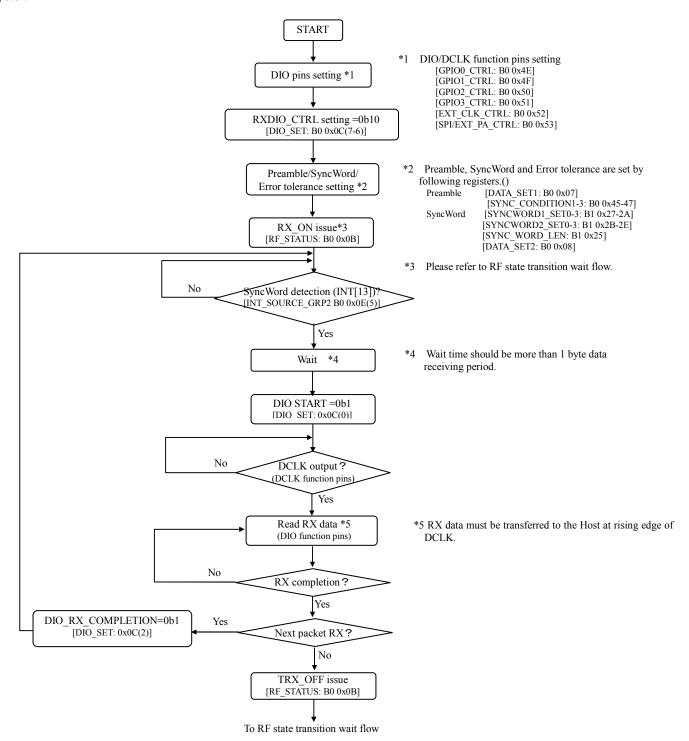
FIFO mode (packet mode) can be selected by setting TXDIO_CTRL[1:0]([DIO_SET: B0 0x0C(5-4)])=0b00. In FIFO mode, data is written to the TX_FIFO by [WR_TX_FIFO:B0 0x7C] register. After write full data of a packet, issuing TX_ON by [RF_STATUS:B0 0x0B] resister. Following preamble/SyncWord, TX_FIFO data is transmitted to the air. Upon TX completion interrupt (INT[16] group 3) occurs, interrupt must be cleared. If the next TX packet is sent, the next TX packet data is written to the TX_FIFO. If RX is expected after TX, RX_ON should be issued by [RF_STATUS: B0 0x0B] resister. TX can be terminated by issuing TRX_OFF by [RF_STATUS:B0 0x0B] register.


(3) FIFO mode (65 byte or more)

The Host must write TX data to the TX_FIFO while checking INT[5] (group1: FIFO-Full interrupt) and INT[4] (group1: FIFO-Empty interrupt) in order to avoid FIFO-Overrun or FIFO-Underrun. Other operations are identical to the FIFO mode (less than 64byte). If FAST_TX mode is selected by FAST_TX_EN ([RF_STATUS_CTRL: B0 0x0A(5)] =0b1, TX operation starts when data amount writte the FIFO exceed the bytes+1 in the [TXFIFO_THRL: B0 0x18].

(4) Automatic TX (less than 64byte)

If AUTO_TX_EN([RF_STATUS_CTRL: B0 0x0A(4)]=0b1, TX starts automatically when FIFO is filled with data equivalent to the Langth. Afer TX completion, RFstate transition setting is by TXDONE_MODE ([RF_STATUS_CTRL: B0 0x0A(1-0)]).

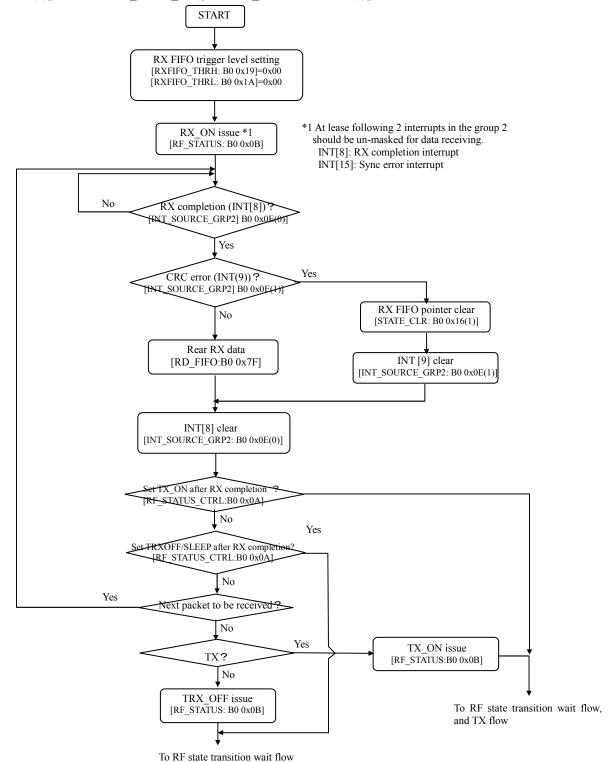

•RX Sequence

(1) DIO mode

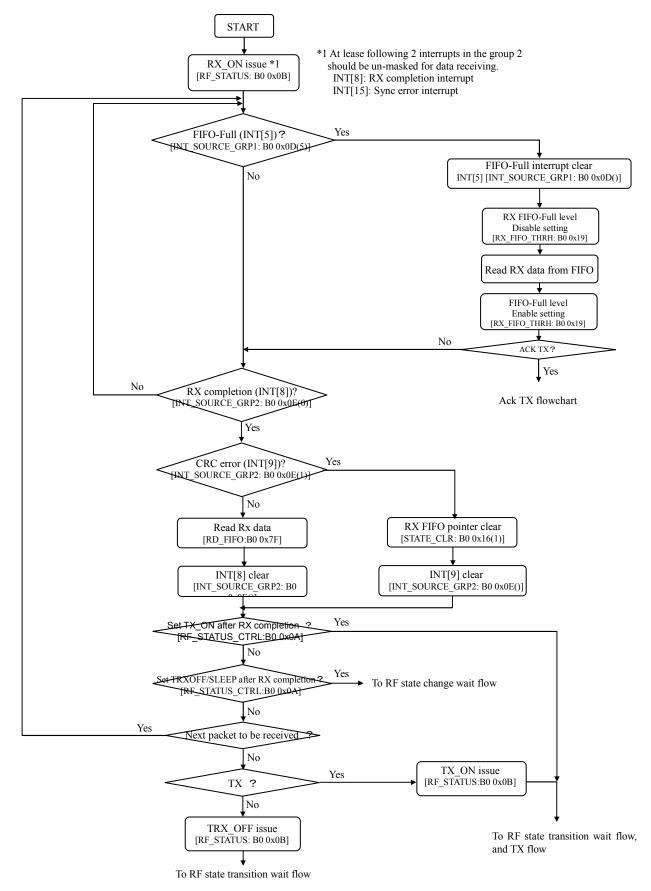
DIO mode can be selected by setting RXDIO_CTRL[1:0]([DIO_SET: B0 0x0C(7-6)])=0b10/0b11. Upon setting DIO mode and issuing RX_ON by [RF_STATUS:B0 0x0B] register, SyncWord detection will be started.

ODIO outmupt mode 1 operation

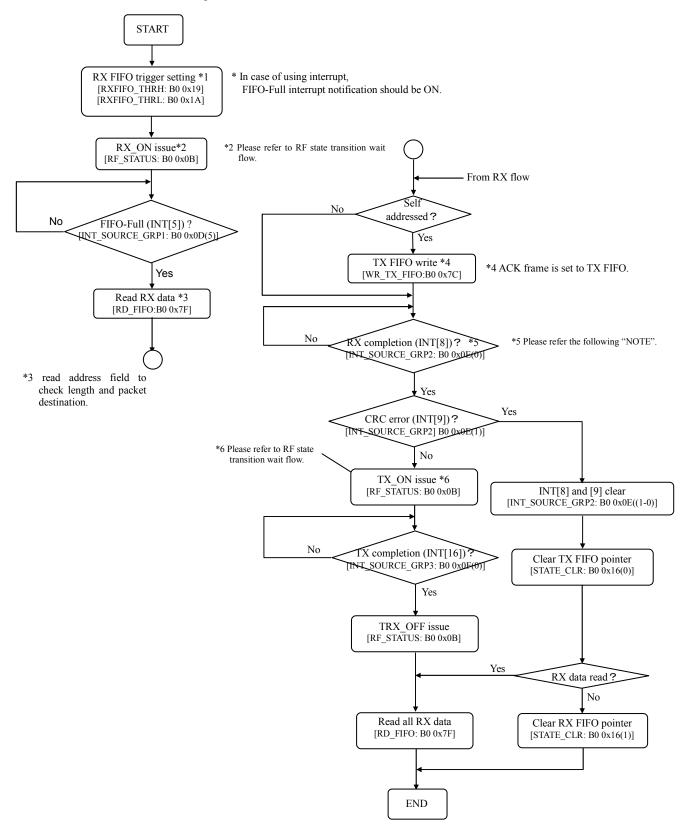
While RXDIO_CTRL[1:0]=0b10, after SyncWord pattern detection, RX data will be strored into the RX_FIFO. RX data stored in the RX_FIFO is output through DIO pins, if setting DIO_START ([DIO_SET: B0 0x0C(0)])=0b1. Upon RX completion, if more data is to be received, by setting DIO_RX_COMPLETE([DIO_SET: B0 0x0C(2)])=0b1 (DIO RX completion), the next packet will be ready to receive. In case of TRX_OFF, issuing TRX_OFF by [RF_STATUS:B0 0x0B] register.


ODIO outmupt mode 2 operation

While RXDIO_CTRL[1:0]=0b11, RX data (after L-field) will be stored into the RX_FIFO. RX data stored in the RX_FIFO is output through DIO pins, if setting DIO_START ([DIO_SET: B0 0x0C(0)])=0b1. Upon outputting RX data defined by L-field, RX is completed and generate RF completion interrupt (INT[8] group2). In case of TRX_OFF, issuing TRX_OFF by [RF_STATUS:B0 0x0B] register.


(2) FIFO mode(less than 64byte)

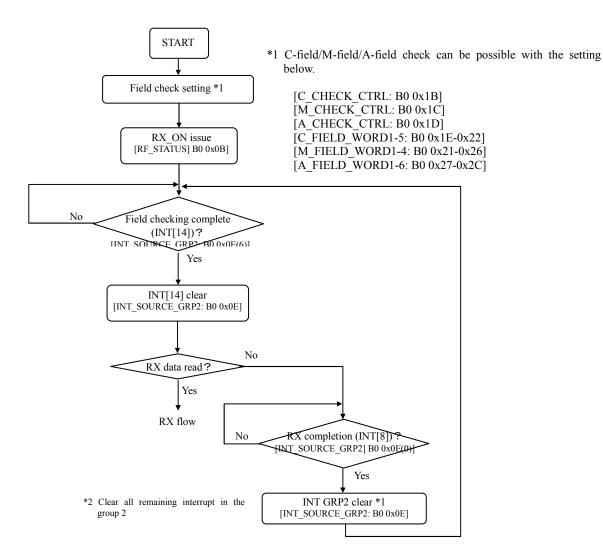
FIFO mode can be selected by RXDIO_CTRL[1:0]([DIO_SET: B0 0x0C(7-6)])=0b00. After SyncWord detection, RX data will be stored into the RX_FIFO. Upon Data RX completion interrupt (INT[8] group2) occurs, the host will read RX data from [RD_FIFO:B0 0x7F] registers. If CRC errors interrupt (INT[9] group2) is generated, the next packet can be ready to receive without reading all current RX data by setting STATE_CLR1 [STATE_CLR: B0 0x16(1)](RX FIFO pointer clear). If FIFO-Full trigger and FIFO-Empty trigger are not used, please set 0b1 to bothe RXFIFO_THRH_EN([RXFIFO_THRH: B0 0x19(7)]) and RXFIFO_THRL_EN([RXFIFO_THRH: B0 0x1A(7)]).


(3) FIFO mode(more than 65byte)

The Host must read RX data from the RX_FIFO while checking INT[5] (group1: FIFO-Full interrupt) and INT[4] (group1: FIFO-Empty interrupt) in order to avoid FIFO-Overrun or FIFO-Underrun. Other operations are identical to the FIFO mode (less than 64byte).

(4) ACK transmission

ACK TX flow is as follows. During RX, ACK frame can be set in the TX FIFO.

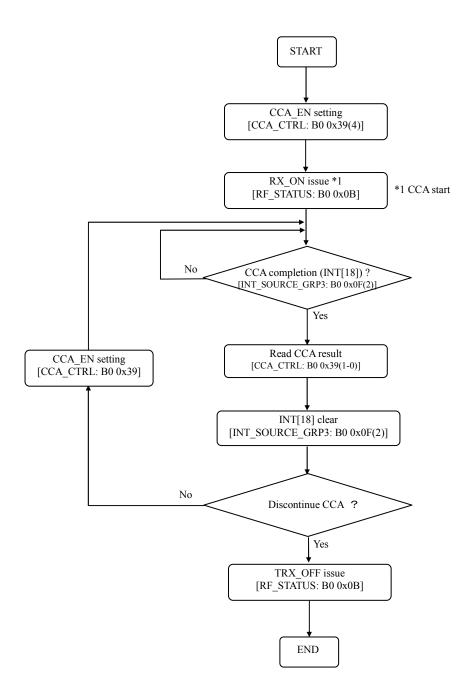


(Note)

If setting "FAST_TX_EB=0b1" or "AUTO_TX_EN=0b1 or "RXDONE_MODE[1:0]=0b01 (move to TX state)" at the [RF_STATUS:CTRL:B0 0x0A] register, moving to TX_ON state automatically after RX completion in above flowchart. Even if CRC error occurs, moving to TX_ON state. Since CRC errors interrupt (INT[9] group2) and RX completion interrupt (INT[8] group2) occur almost same timeing, Therefore in case of CRC error interrupt occurs, Force_TRX_OFF should be issued by [RF_STATUS:B0 0x0B] register withing the transition time from RX state to TX state(1.188msec), and clear TX FIFO pointer by [STATE_CLR:B0 0x16] register. When it is hard to issue Force_TRX_OFF during the trasition time due to MCU performance, "FAST_TX", "AUTO_TX" and "move to TX state after RX completion" should be disabled. (In "FAST_TX", trnasmitting condition depends on [TXFIFO_THRL:B0 0x18] register.)

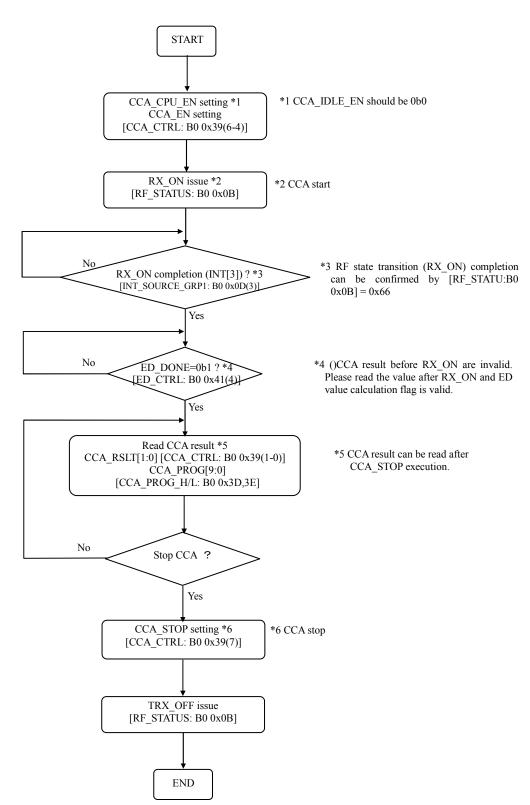
(5) Field checking

After enabling Filedcheck functions, issuing RX_ON by [RF_STATU:B0 0x0B] register. According to the setting of CA_INT_CTRL ([C_CHECK_CTRL:B0 0x1B(6)], filed checking result (match or no match) can be notified by the interrupt INT[14](gropup2: Filed checking interrupt). Numbers of unmatched packets can be counted and stored into [ADDR_CHK_CTR_H/L: B1 0x62/0x63]) registers. This counter can be cleared by STATE_CLR4[STATE_CLR: B0 0x16(4)](Address check counter clear).

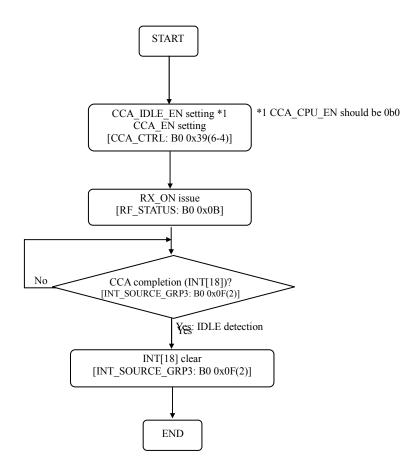


(6) CCA

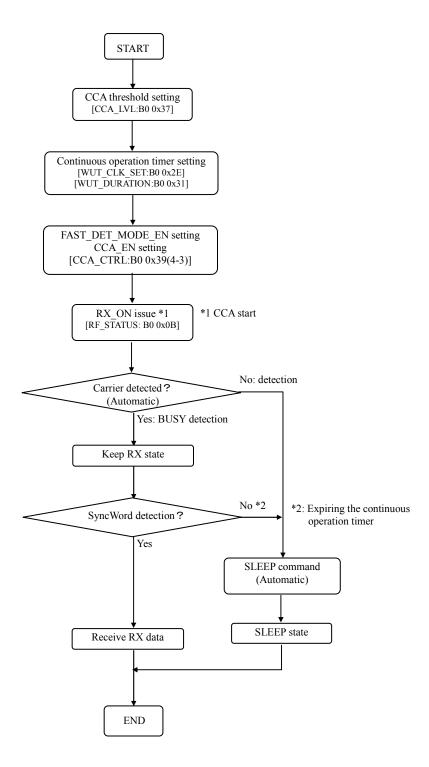
○Normal mode


After setting CCA_EN([CCA_CTRL: B0 0x39(4)])=0b1, issuing RX_ON by [RF_STATU:B0 0x0B] register. Comparing aquired ED average value with CCA threshold value in [CCA_LVL: B0 0x37] register and noitce the result. After CCA execulation, CCA_EN is turned disable and RF maintaind RX_ON.

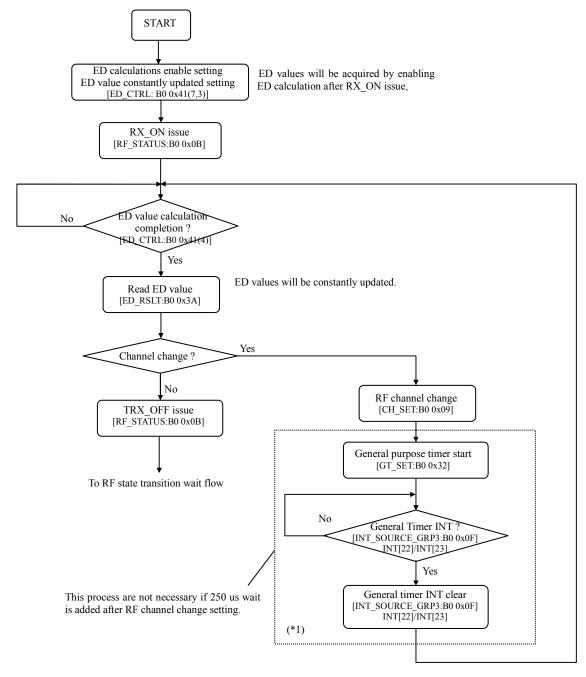
Even if set CCA_EN=0b1 in the RX_ON state, CCA execulation is possible. CCA execulation is also possible during diversity. In this case, after CCA completion, diversity will be resumed automatically.


<u>Ocontinuous mode</u>

Continuous CCA mode is executed by issuing RX_ON by [RF_STATU:B0 0x0B] register after setting CCA_EN([CCA_CTRL: B0 0x39(4)])=0b1 and CCA_CPU_EN([CCA_CTRL: B0 0x39(5)])=0b1. In this mode, CCA continues until CCA_STOP([CCA_CTRL: B0 0x39(7)])=0b1 is set. CCA completion interupt (INT[18]: group3) is not generated. During CCA execution, CCA_RSLT([CCA_CTRL: B0 0x39(1-0)]), [CCA_PROG_L: B0 0x3E], [CCA_PROG_H: B0 0x3D] are constantly updated. The value will be kept by setting CCA_STOP([CCA_CTRL: B0 0x39(7)])=0b1.


oIDLE detection mode

CCA is continuously executed untill IDLE is detected. CCA (IDLE detection mode) will be executing by issuing RX_ON by [RF_STATU:B0 0x0B] register after setting CCA_EN([CCA_CTRL: B0 0x39(4)])=0b1, CCA_IDLE_EN ([CCA_CTRL: B0 0x39(6)])=0b1.


(7) High speed carrier checking mode

This mode is used for deciding whether continuing RX state or stoping RX state during RX state, based on RSSI level and SyncWord detection time. The value set in the [CCA_LVL:B0 0x37] register is used for RSSI level decision, continuous operation timer is used for SyncWord detection time decision. After decision, operation will automaticall switch to – either SLEEP state or RX state.

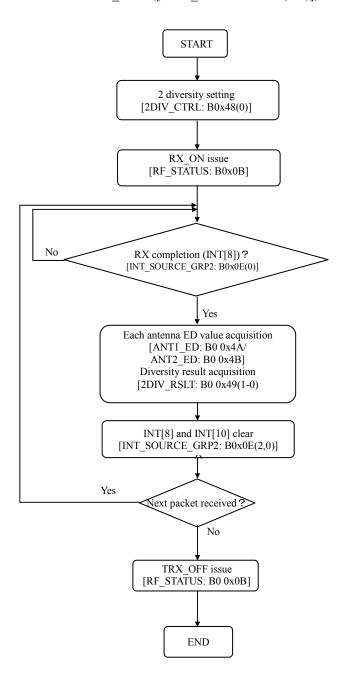
(8) ED-SCAN

ED value will be automatically acquired by issuing RX_ON by [RF_STATU:B0 0x0B] register after setting ED_CALC_EN ([ED_CTRL: B0 0x41(7)])=0b1. ED value is constantly updated when ED_RSLT_SET([ED_CTRL:B0 0x41(3)])=0b0.

(*1) general purpose timer setting example

If 250µsec wait is programmed using general purpose timer 1,

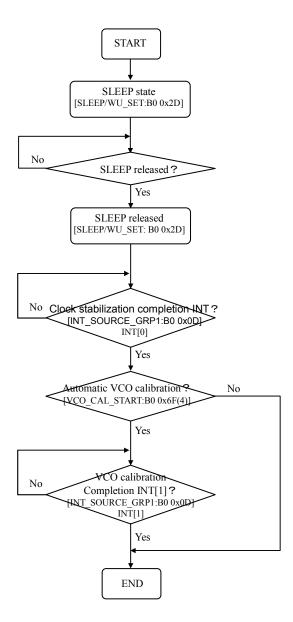
The following registers can be used.


[GT_CLK_SET:B0 0x33]··· 0x01(128 division) [GT_INTERVAL1:B0 0x34]··· 0x04(timer setting)

[GT_SET:B0 0x32]··· 0x03(2MHz clock, timer start)

(9) Antenna diversity

After setting 2DIV_EN([2DIV_CTRL:B0 0x48(0)])=0b1,issuing RX_ON by [RF_STATU:B0 0x0B] register. Antennas are switched to acquire each ED value, the antenna with higher ED value will be automatically selected.

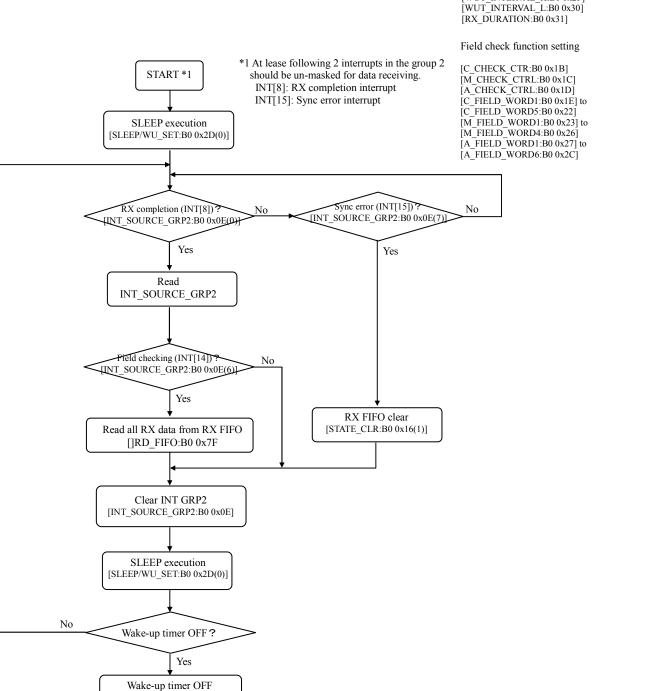

ED values ([ANT1_ED: B0 0x4A/ANT2_ED: B0 0x4B]) from diversity antennas and 2DIV_RSLT ([2DIV_RSLT: B0 0x49(1-0)]) will be updated, upon SyncWord detection. If Diversity detection completion interrupt -INT[10]([INT_SOURCE_GRP2: B0x0E(2)]) is cleared, ED values - ([ANT1_ED: B0 0x4A/ANT2_ED: B0 0x4B]) by diversity and diversity antenna result -2DIV_RSLT([2DIV_RSLT: B0 0x49(1-0)]) will be cleared.

•SLEEP Sequence

(1) SLEEP

SLEEP can be executed by setting SLEEP_EN([SLEEP/WU_SET:B0 0x2D(0)])=0b1. SLEEP can be released by setting SLEEP_EN=0b0. If VCO calibration automatic execution setting AUTO_VCOCAL_EN([VCO_CAL_START:B0 0x6F (4)])=0b1, VCO calibration is performed after clock stabilization completion interrupt (INT[0] group1) from SLEEP release.

(2) Wake-up timer

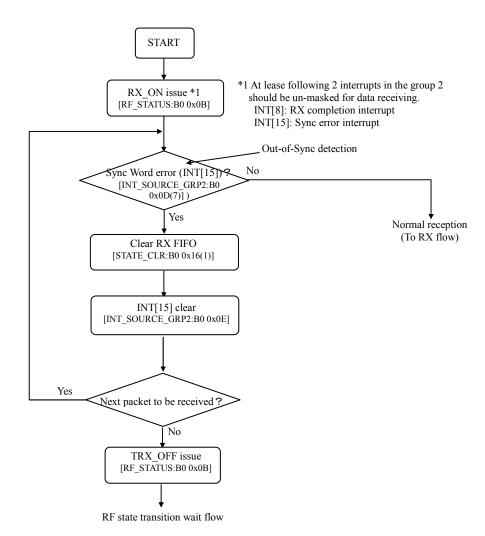

By setting the following registers, after SLEEP, automatically wake-up to RX ON state.

If SyncWord is detected before continuous operation timer-up, RX_ON will be continued to receive a packet. After receiving RX completion interrupt(INT[8]: group2), by reading INT group2, MCU can determine read RX data or not. In order to re-enter SLEEP state, executing SLEEP command after clearing all interrupts in INT group2. If generating Sync error interrupt(INT[15]: group2), executing SLEEP command after clearing RX FIFO and INT group2.

If SyncWord cannot be detected, automatically go back to SLEEP state after continuous operation timer-up.

Wake-up timer setting

WAKEUP_EN([SLEEP_SET:B0 0x2D(4)]) =0b1
RX_DURATION_EN([SLEEP_SET:B0 0x2D(5)])=0b1
WAKEUP_MODE([SLEEP_SET:B0 0x2D(6)])=0b0
[WUT_CLK_SET:B0 0x2E]
[WUT_INTERVAL_H:B0 0x2F]
[WUT_INTERVAL_L:B0 0x30]
[RX_DURATION:B0 0x31]

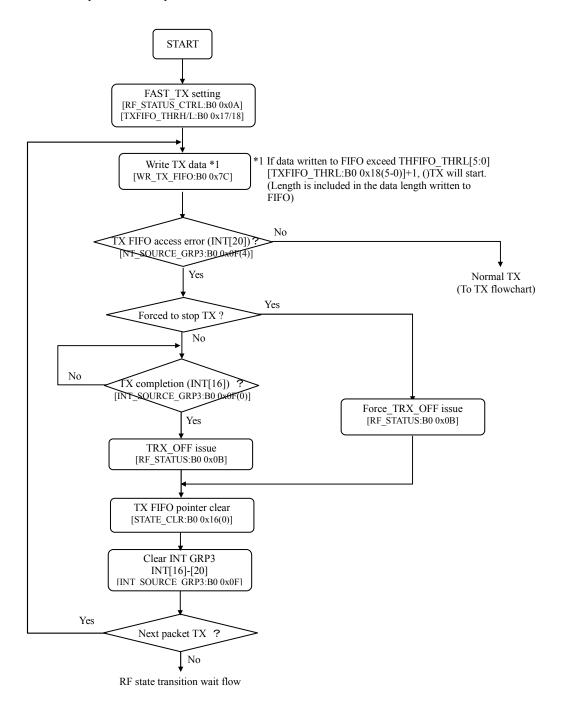

[SLEEP_SET:B0 0x2D(4)]

END

•Error Process

(1) Sync error

When out-of-sync is detected during data reception after SyncWord detection, Sync error interrupt (INT[15] group2) will be generated, RX completion interrupt (INT[8]: group2) will not be generated. If Sync error interrupt occurs, issuing STATE_CLR1 [STATE_CLR: B0 0x16(1)](RX FIFO pointer clear) without read RX_FIFO data and clear Sync error interrupt. "data reception" indicates receiving data (L-field, data, CRC). after SyncWord detection.

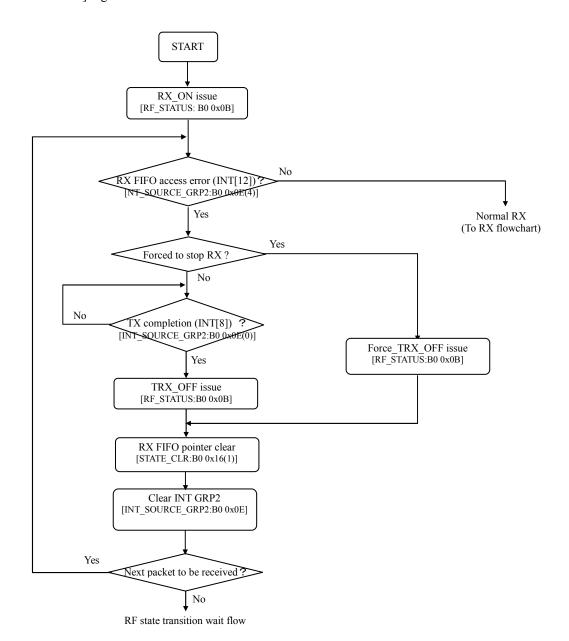

(2) TX FIFO access error

If one of the conditions are met, TX FIFO access error interrupt (INT[20]: group3) will be generated.

- •After TX Data request accept completion interrupt (INT[17]: group3] was generated, next packet is written to the TX FIFO without transmiting the current TX data.
- •Data write overflow occurs to the TX FIFO.
- •No TX data in the TX FIFO during TX data transimission.

When TX FIFO access error interrupt occurs, issuing TRX_OFF after TX completion interrupt(INT[16]: group3) is recognized, or issueing Force_TRX_OFF by [RF_STATUS:B0 0x0B] register without waiting for TX completion interrupt. After that, issuing TX FIFO pointer clear by [STATE_CLR:B0 0x16] register and clear remaining interrupts relative with TX in the [INT_SOURCE_GRP3:B0 0x0F] register.

If TX FIFO access error occurs, subquent TX data will be inverted. CRC error should be detected at rexeiver side even if TRX OFF is issued when TX completion interrupt detected.

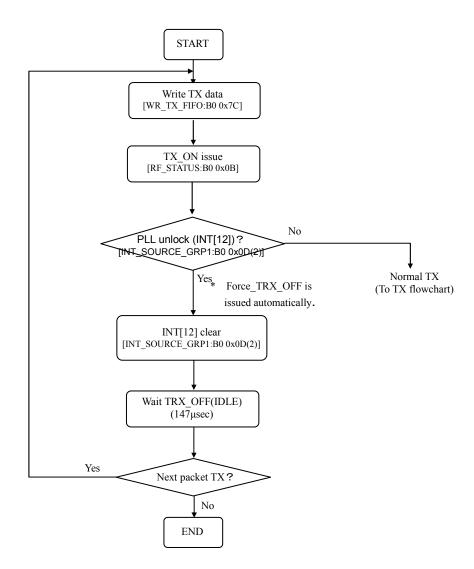


(3) RX FIFO access error

If one of the following condition is met, RX FIFO access error interrupt (INT[12]) will be generated.

- •RX data overflow occurs to RX FIFO
- •Read RX FIFO during no data in the RX FIFO

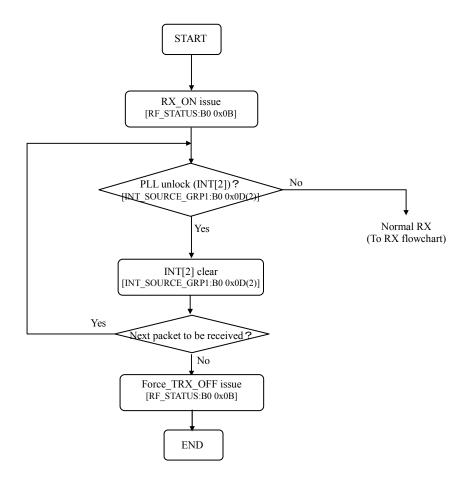
When RX FIFO access error interrupt occurs, issuing TRX_OFF after RX completion interrupt(INT[8]: group2) is recognized, or issueing Force_TRX_OFF by [RF_STATUS:B0 0x0B] register without waiting for RX completion interrupt. After that, issuing RX FIFO pointer clear by [STATE_CLR:B0 0x16] register and clear remaining interrupts in the [INT SOURCE GRP2:B0 0x0E] register.



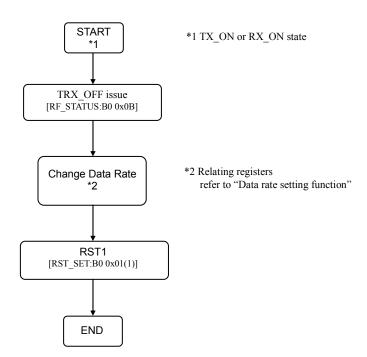
(4) PLL unlock detection

\circ TX

During TX, if PLL unlock is detected, PLL unlock interrupt (INT[2] group1) will be generated. When PLL unlock interrupt occurs, Force_TRX_OFF is automaticcallu issed and move to IDLE state. SET_TRX[3:0] ([RF_STATUS: B0 0x0B(3-0)]) will be written to 0b0011(Force_TRX_OFF). PLL unlock might be occurred when VCO calibration value is not correct. Please confirm VCO calibration or perform VCOcalibration again.


After PLL unlock interrupt occurs, max. 147 µs is necessary to move to IDLE state. Please wait for at least 147µs before next TX, RX or VCO calibration is performed.

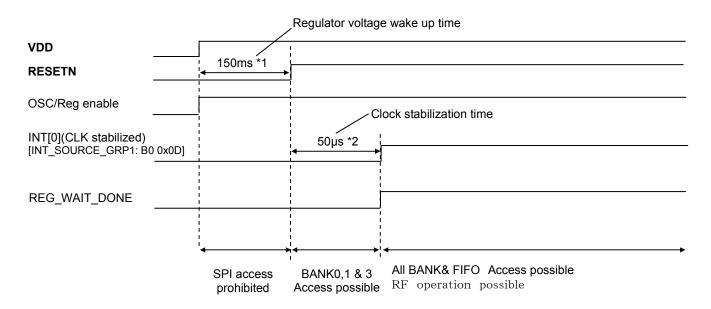
\circ RX


During RX, if PLL unlock is detected, PLL unlock interrupt (INT[2] group1) will be generated. During RX, , even if PLL unlock is detected, RX state is maintained (do not move to IDLE state). Please receive next packet after clearing PLL unlock interrupt.

When PLL unlock interrupt occurs frequently, PLL unlock cause mitgh be due to the mismatch of the VCO circuit and using frequency band. Please use after removing the cause by circuit verification.

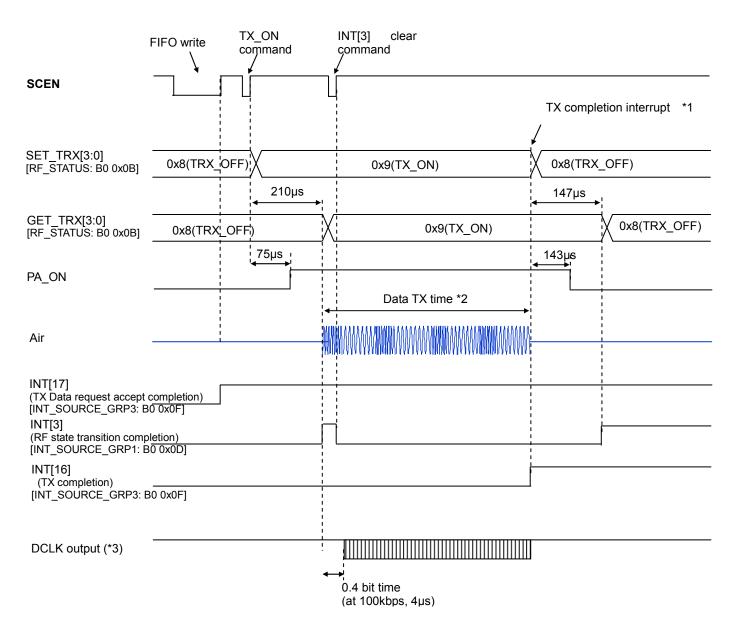
•Data Rate Change Sequence

When changing data rate during operation, data rate should be set in TRX_OFF state. RST1([RST_SET: B0 0x01(1)])(MODEM reset) is required after change. if not issuing RST1, ML7406 can not transmit or receive correctly.


■Timing Chart

The following are operation timing for major functions.

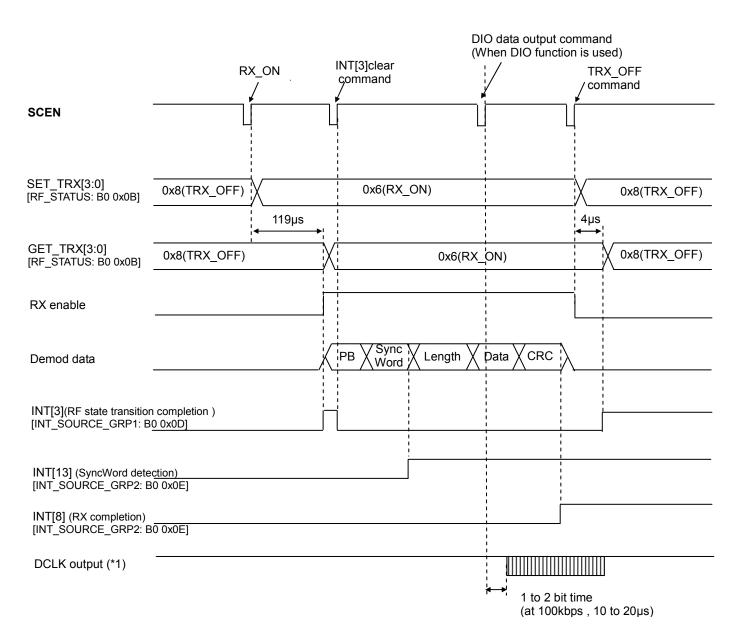
(Note)


Bold characters indicate pins related signals .Non bold characters indicate internal signals.

•Start-up

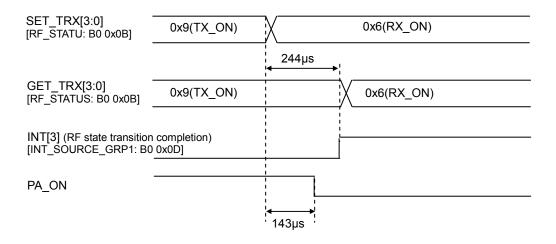
- *1 : For wake-up timing of VDD and RESETN, please refer to the "Reset characteristics".
- *2 : When setting XTAL_EN([CLK_SET2: B0 0x03(4)])=0b1, it is possible to adjust to $10/50/250/500\mu s$, by setting OSC_W_SEL[1:0]([ADC_CLK_SET: B1 0x08(6-5)]),.

\bullet TX

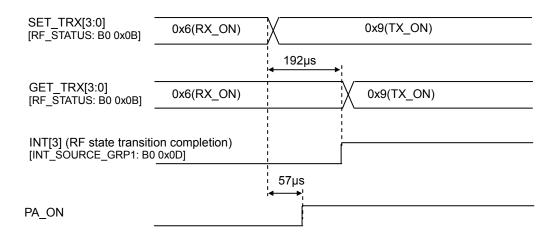


- *1 : When TXDONE_MODE[1:0]([RF_STATUS_CTRL: B0 0x0A(1-0)]) = 0b00(default), SET_TRX[3:0]([RF_STATUS: B0 0x0B(3-0)]) will be set to 0x8(TRX_OFF) automatically, upon detection of TX completion.
- *2 : Data TX time calculation is as follows:

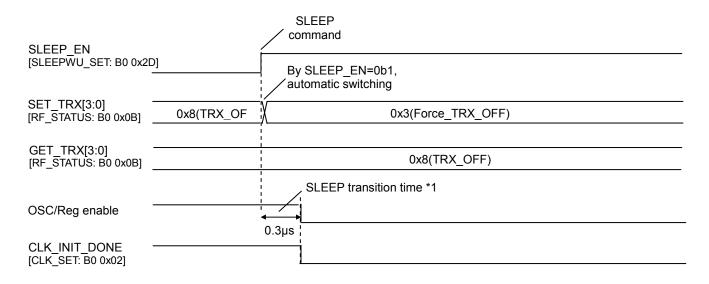
Data TX time $[sec] = (number\ of\ TX\ bits+3) \times 1bit\ TX\ duration\ time[sec]$ 1bit $TX\ duration\ time\ [sec] = 1/data\ rate\ [bps]$


*3 : When setting TXDIO_CTRL[1:0]([DIO_SET: B0 0x0C(5-4)])=0b01.

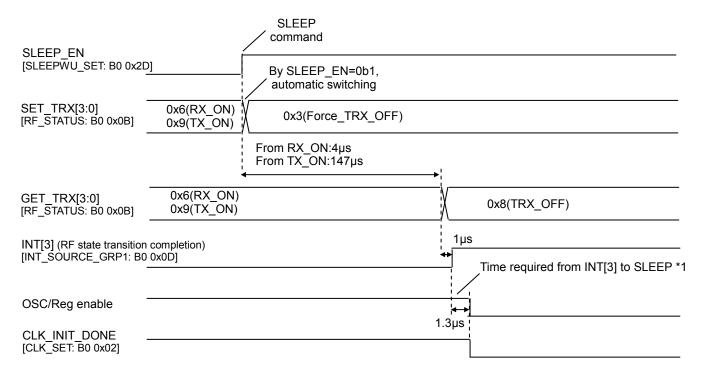
\bullet RX



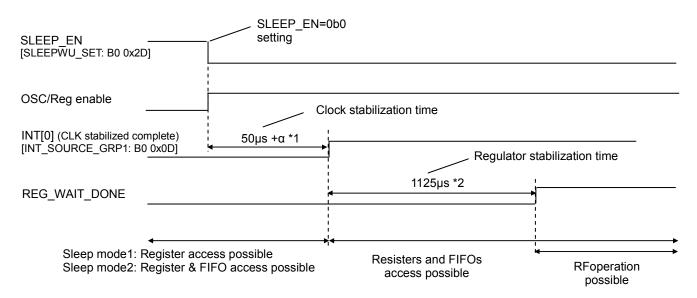
^{*1 :} When setting RXDIO_CTRL[1:0]([DIO_SET: B0 0x0C(7-6)])=0b10 or 0b11.


•Transtion from TX to RX

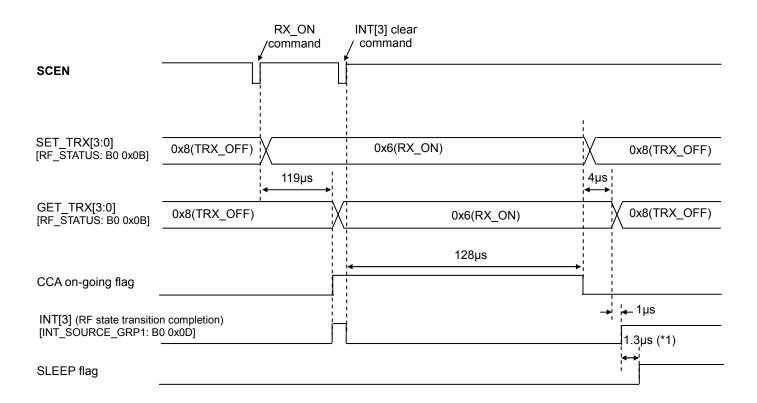
•Transtion from RX to TX



•Transtion from IDLE to SLEEP


*1 : Clock input should be required for SLEEP transition. If TCXO/SPXO is stopped during SLEEP state, please wait 0.3µs after SLEEP command issued (SLEEP_EN([SLEEP/WU_SET: B0 0x2D(0)])=0b1) and then stop TCXO/SPXO.

•Transtion from TX/RX state to SLEEP


*1 : If TCXO/SPXO is used, , please stop TCXO/SPXO(clock) input after 1.3 μ s from INT[3] notification by setting SLEEP command (SLEEP_EN([SLEEP/WU_SET: B0 0x2D(0)])=0b1) .

•Transition from SLEEP to IDLE

- *1: When setting XTAL_EN([CLK_SET2: B0 0x03(4)])=0b1, it is possible to adjust to $10/50/250/500\mu s$, by setting [ADC_CLK_SET: B1 0x08(6-5)]. α is oscillation cuircuits start-up time, and max. is $500\mu s$. When using TCXO (TCXO_EN([CLK_SET2:B0 0x03(6)])=0b1) or using SPXO (SPXO_EN ([CLK_SET2: B0 0x03(5)])=0b1), clock stabilization time is $5\mu s$.
- *2: [VCO_CAL_START:B0 0x6F] and [SET_TRX:B0 0x0B] registers access is possible, but process is pending until REG_WAIT_DONE is asserted.

•High speed carrier checking mode

^{*1:} Clock input should be required for SLEEP transition. If TCXO/SPXO is stopped during SLEEP state, please wait 1.3µs from INT[3] and then stop TCXO/SPXO.

■Registers

•Registers map

Addressing range for each register BANK are 0x00-0x7F(128 bytes). Grey colours in the table are unused bits or reserved bits. Please use the initial setting value, as reserved bits may be used for functions not open to the customers. It may cause unexpected operation.

Each BANK can be selected by [BANK_SEL] register (B0 0x00, B1 0x00, B2 0x00, B3 0x00), enabling each bank in bit7-4 (B*_ACEN) and specified BANK number to bit3-0.

If registers value is specified in the description, do not change.

BANK0

address						b	it			
[HEX]	Register name	description	3	2	1	0				
00	BANK_SEL	Register access bank selection								
01	RST_SET	Software reset setting								
02	CLK_SET1	Clock cofiguration 1								
03	CLK_SET2	Clock configuration 2								
04	PKT_CTRL1	Packet configuration 1								
05	PKT_CTRL2	Packet configuration 2								
06	DRATE_SET	Data rate setting								
07	DATA_SET1	TX/RX data configulation 1								
08	DATA_SET2	TX/RX data configulation 2								
09	CH_SET	RF channel setting								
0A	RF_STATUS_CTRL	RFauto status transition control								
0B	RF_STATUS	RFstate setting and status indication								
0C	DIO_SET	DIO mode configuration								
0D	INT_SOURCE_GRP1	Interrupt status for INT0 to INT7								
0E	INT_SOURCE_GRP2	Interrupt status for INT8 to INT15 (RX)								
0F	INT_SOURCE_GRP3	Interrupt statsu for INT16 to INT23 (TX)								
10	INT_EN_GRP1	Interrupt mask for INT0 to INT7								
11	INT EN GRP2	Interrupt mask for INT8 to INT15								-
12	INT_EN_GRP3	Interrupt mask for INT16 to INT23								
13	CRC_ERR_H	CRC error status (high byte)								
14	CRC_ERR_M	CRC error status (middle byte)								
-		• • •	-							
15	CRC_ERR_L	CRC error status (low byte)								_
16	STATE_CLR	State clear control								<u> </u>
17	TXFIFO_THRH	TX FIFO-Full level setting	-							<u> </u>
18	TXFIFO_THRL	TX FIFO-Emptythreshold, FAST_TXenable thresold								<u> </u>
19	RXFIFO_THRH	RX FIFO-Full thresold								<u> </u>
1A	RXFIFO_THRL	RX FIFO-Empty threshold								
1B	C_CHECK_CTRL	Control field (C-field) detection setting								
1C	MCHECK_CTRL	Manufactute ID field (M-field) detection setting								<u> </u>
1D	ACHECK_CTRL	Address field (A-field) detection setting								
1E	C_FIELD_CODE1	C-field setting code #1								
1F	C_FIELD_CODE2	C-field setting code #2								
20	C_FIELD_CODE3	C-field setting code #3								
21	C_FIELD_CODE4	C-field setting code #4								
22	C_FIELD_CODE5	C-field setting code #5								
23	M_FIELD_CODE1	M-field 1 st byte setting code #1								
24	M_FIELD_CODE2	M-field 1 st byte setting code #2								
25	M_FIELD_CODE3	M-field 2 nd byte setting code #1								
26	M_FIELD_CODE4	M-field 2 nd byte setting code #2								
27	A_FIELD_CODE1	A-field 1 st byte setting								
28	A_FIELD_CODE2	A-field 2 nd byte setting								
29	A_FIELD_CODE3	A-field 3 rd byte setting								
2A	A_FIELD_CODE4	A-field 4 th byte setting								
2B	A_FIELD_CODE5	A-field 5 th byte setting	1							
2C	A_FIELD_CODE6	A-field 6 th byte setting								
2D	SLEEP/WU_SET	SLEEP execution and Wake-up operation setting	1							
2E	WUT_CLK_SET	Wake-up timer clock division setting	+							
2F	WUT_INTERVAL_H	Wake-up timer interval setting (high byte)	+							\vdash
30	WUT_INTERVAL_L	Wake-up timer interval setting (low byte)								\vdash
31	RX_DURATION	Continue operation timer (after Wake-up) setting			 					
32	GT_SET		General purpose timer configuration							
33	GT_CLK_SET	General purpose timer configuration General purposetimer clock division setting			<u> </u>					\vdash
00	01_0LI_0L1			1	<u> </u>	!	-	-		₩
34	GT1_TIMER	General purpose timer #1 setting								

address						bi	t			_
[HEX]	Register name	description	7	6	5	4	3	2	1	0
36	CCA_IGNORE_LVL	ED threshold level setting for excluding CCA judgement								
37	CCA_LVL	CCA threshold level setting								
38	CCA_ABORT	Timing setting for forced termination of CCA operation								
39	CCA_CTRL	CCA control setting and result indication								
3A	ED_RSLT	ED value indication								
3B	IDLE_WAIT_H	IDLE detection period setting during CCA (high 2 bits)								
3C	IDLE_WAIT_L	IDLE detection period setting during CCA (low byte)								
3D	CCA_PROG_H	IDLE detection elapsed time display (during CCA high byte)								
3E	CCA_PROG_L	IDLE detection elapsed time display during CCA(low byte)								
3F-40	Reserved									
41	ED_CTRL	ED detection control setting								
42	TXPR_LEN_H	TX preamble length setting (high byte)								
43	TXPR_LEN_L	TX preamblelength setting (low byte)								
44	POSTAMBLE_SET	Postamble length and pattern setting								
45	SYNC_CONDITION1	RX preamble setting and ED control setting								
46	SYNC_CONDITION2	ED threshold setting during synchronization								
47	SYNC_CONDITION3	Tolerance of bit error setting in RX preamble and SyncWord detection								
48	2DIV_CTRL	Antenna diversity setting								
49	2DIV_RSLT	Antenna diversity result								
4A	ANT1_ED	ANT1 ED value during antenna diversity								
4B	ANT2_ED	ANT2 ED value during antenna diversity								
4C	ANT CTRL	Antenna control setting for TX, CCA or RX								
4D	MON_CTRL	Monitor function setting								
4E	GPIO0_CTRL	GPIO0 pin (pin#16) configuration setting								
4F	GPIO1_CTRL	GPIO1 pin (pin#17) configuration setting								
50	GPIO2 CTRL	GPIO2 pin (pin#18) configuration setting								
51	GPIO3_CTRL	GPIO3 pin (pin#19) configuration setting								
52	EXTCLK_CTRL	EXT CLK pin (pin #10) control setting								
53	SPI/EXT_PA_CTRL	SPI interface IO configurattion /external PA control setting								
54	IF_FREQ_H	IF frequency setting (high byte)								
55	IF_FREQ_L	IF frequency setting (low byte)								
56	IF_FREQ_CCA_H	IF frequency setting during CCA operation (high byte)								
57	IF_FREQ_CCA_L	IF frequency setting during CCA operation (low byte)	+							
58	BPF_ADJ_H	Bandpass filter capacitance adjustment (high 2 bits)								
59	BPF_ADJ_L	Bandpass filter capacitance adjustment (low byte)								
5A-5B	Reserved	Buriapass inter capacitance adjustment (low byte)								
5C	BPF_CO	BPF coefficient								
5D	BPF_CO_CCA	BPFcoefficient (CCA)								H
5E	IFF_ADJ_H	Demodulator DC level adjustment (high 2 bits)								
5F	IFF ADJ L	Demodulator DC level adjustment (low byte)								
60	IFF_ADJ_CCA_H	Demodulator DC level adjustment during CCA (high 7 bits)								H
61	IFF_ADJ_CCA_L	Demodulator DC level adjustment during CCA (low byte)								
62	OSC_ADJ1	Coarse adjustment of load capacito for oscillation circuits								
63	OSC_ADJ2									
64	OSC_ADJ3	Fine adjustment of load capaciatnce for oscillation circuits Oscillation circuits bias adjustment				 				
65	OSC_ADJ4	Oscillation circuits bias adjustment (high speed start-up)								
66	RSSI_ADJ	RSSI value adjustment								
67	PA_MODE	PA mode setting/PA regulator coarse adjustment				 				
68		PA regulator fine adjustment								
69	PA_REG_FINE_ADJ PA_ADJ									
6A	_	PA gain adjustment								
	Reserved									
6B	Reserved	IF I/O amplitude helence adjustment								
6C	IQ_MAG_ADJ	IF I/Q amplitude balance adjustment							<u> </u>	\vdash
6D	IQ_PHASE_ADJ	IF I/Q phase balance adjustment								ı

address	Pogistor name	description				bi	t			
[HEX]	Register name								1	0
6E	VCO_CAL	VCO calibration setting or status indicarion	7 6 5 4 3 CO calibration setting or status indicarion							
6F	VCO_CAL_START	VCO calibration execution	· · · · · · · · · · · · · · · · · · ·							
70	CLK_CAL_SET	Clock calibration setting								
71	CLK_CAL_TIME	Clock calibration time setting								
72	CLK_CAL_H	Clock calibration value readout (high byte)								
73	CLK_CAL_L	Clock calibration value readout (low byte)								
74	Reserved									
75	SLEEP_INT_CLR	nterrupt clear setting during SLEEP state								
76	RF_TEST_MODE	TX test pattern setting	, , ,							
77	STM_STATE	Sate machine status and synchronization status indication								
78	FIFO_SET	FIFO readout setting								
79	RD_FIFO_LAST	RX FIFO data usage status indication	RX FIFO data usage status indication							
7A	TX_PKT_LEN_H	TX packet length setting (high byte)	X packet length setting (high byte)							
7B	TX_PKT_LEN_L	"X packet length setting (low byte)								
7C	WR_TX_FIFO	TX FIFO								
7D	RX_PKT_LEN_H	RX packet length indication (high byte)								
7E	RX_PKT_LEN_L	RX packet length indication (low byte)								
7F	RD_FIFO	FIFO read								

BANK1

address	Do sistem warms	donovinkino				b	it			
[HEX]	Register name	description	7	6	5	4	3	2	1	0
00	BANK_SEL	BANK selection								
01	CLK_OUT	CLK_OUT (GPIOn) output frequency setting								
02	TX_RATE_H	TX data rate conversion setting (high 4 bits)								
03	TX_RATE_L	TX data rate conversion setting (low byte)								
04	RX_RATE1_H	RX data rate conversion setting1 (high 4 bits)								
05	RX_RATE1_L	RX data rate conversion setting1 (low byte)								
06	RX_RATE2	RX data rate conversion setting2								
07	Reserved									
08	ADC_CLK_SET	RSSI ADC clock frequency setting								
09	TEMP	Temperature digital value indication								
0A	Reserved									
0B	PLL_LOCK_DETECT	PLL lock detection setting								
0C	GAIN_MTOL	Threshold level setting for switching middle gain to low gain								
0D	GAIN LTOM	Threshold level setting for switching low gain to middle gain								
0E	GAIN_HTOM	Threshold level setting for switching high gain to middle gain							_	
0F	GAIN_MTOH	Threshold level setting for switching middle gain to high gain								
10	RSSI_ADJ_M	RSSI offset value setting during middle gain opoeration							-	
11	RSSI_ADJ_L	RSSI offset value setting during low gain operation							-	
12	RSSI_STABLE_TIME	RSSI stabilization wait time setting							_	
13	RSSI_MAG_ADJ	Scale factor setting for ED value conversion							_	
14	RSSI_VAL	RSSI value indication								
15	AFC/GC_CTRL	AFCcontrol/gain controlmode setting								
16	CRC_POLY3	CRC polynomial setting 3								
17	CRC_POLY2	CRC polynomial setting 2								
18	CRC_POLY1	CRC polynomial setting 1								
19	CRC_POLY0	CRC polynomial setting 0								
1A	Reserved									
1B	TXFREQ_I	TX frequency setting (I counter)								
1C	TXFREQ_FH	TX frequency setting (F counter high 4bit)								
1D	TXFREQ_FM	TX frequency setting (F counter middle byte)								
1E	TXFREQ_FL	TX frequency setting (F counter low byte)								
1F	RXFREQ_I	RX frequency setting (I counter)								
20	RXFREQ_FH	RX frequency setting (F counter high 4bit)								
21	RXFREQ_FM	RX frequency setting (F counter middle byte)								
22	RXFREQ_FL	RX frequency setting (F counter low byte)								
23	CH_SPACE_H	Channel space setting (high byte)								
24	CH_SPACE_L	Channel space setting (low byte)								
25	SYNC_WORD_LEN	SyncWord lenght setting								
26	SYNC_WORD_EN	SyncWord enable setting								
27	SYNCWORD1_SET0	SyncWord #1 setting (bit24-31)								
28	SYNCWORD1_SET1	SyncWord #1 setting (bit16-23)								
29	SYNCWORD1_SET2	SyncWord #1 setting (bit8-15)								
2A	SYNCWORD1_SET3	SyncWord #1 setting (bit0-7)								
2B	SYNCWORD2_SET0	SyncWord #2 setting (bit24-31)								
2C	SYNCWORD2_SET1	SyncWord #2 setting (bit16-23)								
2D	SYNCWORD2_SET2	SyncWord #2 setting (bit8-15)								
2E	SYNCWORD2_SET3	SyncWord #2 setting (bit0-7)								
2F	FSK_CTRL	GFSK/FSK mudulation timing resolution setting								
30	GFSK_DEV_H	GFSK frequency deviation setting (high 6 bits)								
31	GFSK_DEV_L	GFSK frequency deviation setting (low byte)								
		FSK 1 st frequency deviation setting (high 6 bits) /							_	
32	FSK_DEV0_H/GFIL0	Gaussian filter coefficient setting 0								
33	FSK_DEV0_L/GFIL1	FSK 1 st frequency deviation setting (low byte) / Gaussian filter coefficient setting 1								
34	FSK_DEV1_H/GFIL2	FSK 2 nd frequency deviation setting (high 6 bits) / Gaussian filter coefficient setting 2								

BANK1(continue)

BANK1(conti address	Register name	description				b	it			
[HEX]	Register flame	'	4	3	2	1	0			
35	FSK_DEV1_L/GFIL3	FSK 2 nd frequency deviation setting (low byte) / Gaussian filter coefficient setting 3								
36	FSK_DEV2_H/GFIL4	FSK 3 rd frequency deviation setting (high 6 bits) / Gaussian filter coefficient setting 4							<u> </u>	
37	FSK_DEV2_L/GFIL5	FSK 3 rd frequency deviation setting (low byte) / Gaussian filter coefficient setting 5							L	
38	FSK_DEV3_H/GFIL6	FSK 4 th frequency deviation setting (high 6 bits) / Gaussian filter coefficient setting 6							1	
39	FSK_DEV3_L	FSK 4 th frequency deviation setting (low byte)								
3A	FSK_DEV4_H	FSK 5 th frequency deviation setting (high 6 bits)								
3B	FSK_DEV4_L	FSK 5 th frequency deviation setting (low byte)								
3C	FSK_TIM_ADJ4	FSK 4 th frequency deviation hold timing seting								
3D	FSK_TIM_ADJ3	FSK 3 rd frequency deviation hold timing seting								
3E	FSK_TIM_ADJ2	FSK 2 nd frequency deviation hold timing seting								П
3F	FSK_TIM_ADJ1	FSK 1 st frequency deviation hold timing seting								П
40	FSK_TIM_ADJ0	FSK no-deviation frequency (carrier frequency) hold timing setting								
41-47	Reserved									
48	2DIV_MODE	Antenna diversity mode setting								
49	2DIV_SEARCH1	Antenna diversity search time setting 1								
4A	2DIV_SEARCH2	Antenna diversity search time setting 2								
4B	2DIV_FAST_LVL	ED threshold setting during Antenna diversity FAST mode								
4C	Reserved									
4D	VCO_CAL_MIN_I	VCO Calibration low limit frequency setting (I counter)								Г
4E	VCO_CAL_MIN_FH	VCO Calibration low limit frequency setting (F counter high 4 bits)								
4F	VCO_CAL_MIN_FM	VCO Calibration low limit frequency setting (F counter middle byte)								
50	VCO_CAL_MIN_FL	VCO Calibration low limit frequency setting (F counter low byte)	1							
51	VCO_CAL_MAX_N	VCO_CAL Max frequency setting								
52	VCAL_MIN	VCO calibration low limit value indication and setting								
53	VCAL_MAX	VCO calibration upper limit value indication and setting								
54-55	Reserved	11								
56	DEMOD_SET0	Demodulator configulation 0								
57	DEMOD_SET1	Demodulator configulation 1								
58	DEMOD_SET2	Demodulator configulation 2								H
59	DEMOD_SET3	Demodulator configulation 3								T
5A	DEMOD_SET4	Demodulator configulation 4	1							F
5B	DEMOD_SET5	Demodulator configulation 5	1							F
5C	DEMOD SET6	Demodulator configulation 6	1							
5D	DEMOD_SET7	Demodulator configulation 7	+							
5E	DEMOD_SET8	Demodulator configulation 8	+							
5F	DEMOD_SET9	Demodulator configulation 9	+							
60	DEMOD_SET10	Demodulator configulation 10								
61	DEMOD_SET11	Demodulator configulation 11								
62	ADDR_CHK_CTR_H	Address check counter indication (high 3 bit)								H
63	ADDR_CHK_CTR_L	Address check counter indication (low byte)	_							H
64	WHT_INIT_H	Whitening initializing state setting (high 1bit)								H
65	WHT_INIT_L	Whitening initializing state setting (low 8bit)								H
		Whitening polynomial generation setting								H
66	WHT_CFG Reserved	writtening polynomial generation setting							H	
67-7E		ID add indication								
7F	ID_CODE	ID code indication	1	1	1	1	1	1		1

BANK2

address	Dominton mana	d suintis u				b	it			
[HEX]	Register name	description	7	6	5	4	3	2	1	0
00	BANK_SEL	BANK selection	ANK selection							
7E	CCA_MASK_SET	Filter stabilization setting during CCA	ilter stabilization setting during CCA							

BANK3

address	Dominton mana	d winding				b	it			
[HEX]	Register name	description	7	6	5	4	3	2	1	0
00	BANK_SEL	BANK selection	BANK selection							
23	2MODE_DET	2 modes detection setting (MODE-T and MODE-C)								

(Note)

1. Other registers are closed register and access is limited. Accessible registers are written in the "initialization table".calibration operation, do not access BANK1 registers.

•Register Bank0

0x00[BANK_SEL]

Function: Register access bank selection

Address:0x00 (BANK0)

Reset value:0x11

Bit	Bit name	Reset value	R/W	description
7	B3_ACEN	0	R/W	BANK3 register access enable 0: access disable 1: access enable
6	B2_ACEN	0	R/W	BANK2 register access enable 0: access disable 1: access enable
5	B1_ACEN	0	R/W	BANK1 register access enable 0: access disable 1: access enable
4	B0_ACEN	1	R/W	BANK0 register access enable 0: access disable 1: access enable
3-0	BANK[3:0]	0001	R/W	BANK selection 0001: BANK0 access 0010: BANK1 access 0100: BANK2 access 1000: BANK3 access Other setting: prohibit

(Note)

- 1. During VCOcalibration operation, do not access BANK1 registers.
- 2. Register acess can be done by CLK_INIT_DONE([CLK_SET1: B0 0x02(7)])=0b0. But the registers related to RF status has to be accessed after CLK_INIT_DONE=0b1.

$0x01[RST_SET]$

Function:Software reset setting Address:0x01 (BANK0) Reset value:0x00

Bit	Bit name	Reset value	R/W	description
7	RST3_EN	0	R/W	Reset3 enable setting 0: reset disable 1: reset enable (after reset, automatically written to 0b0)
6	RST2_EN	0	R/W	Reset2 enable setting 0: reset disable 1: reset enable (after reset, automatically written to 0b0)
5	RST1_EN	0	R/W	Reset1 enable setting 0: reset disable 1: reset enable (after reset, automatically written to 0b0)
4	RST0_EN	0	R/W	Reset 0 enable setting 0: reset disable 1: reset enable (after reset, automatically written to 0b0)
3	RST3	0	R/W	PHY function reset bit7(RST3_EN)=0b1, reset can be executed. 0: no reset 1: reset execution (after reset, automatically written to 0b0)
2	RST2	0	R/W	RF control function reset bit6(RST2_EN)=0b1, reset can be executed. 0: no reset 1: reset execution (after reset, automatically written 0b0)
1	RST1	0	R/W	MODEM function reset bit5(RST1_EN)=0b1, reset can be executed. 0: no reset 1: reset execution (after reset, automatically written to 0b0)
0	RST0	0	R/W	CFG (Configuration) function reset bit4(RST0_EN)=0b1, reset can be executed. 0: no reset 1: reset execution (after reset, automatically written to 0b0) (Note) all registers, except [CLK_SET2: B0 0x03] register bit6-3, are reset to the initial value. (Note) After reset, FIFO data are not guaranteed.

[Description]

- 1. Please set enable bit (bit7 to bit4) and execution bit (bit3 to bit0) at the same time. After reset, status are not retained and automatically writen to 0b0.
- 2. 2µs after writing to the execution bit (bit3 to bit0), reset operation will complete.

0x02[CLK_SET1]

Function:Clock setting Address:0x02 (BANK0) Reset value:0x1F

Bit	Bit name	Reset value	R/W	description
7	CLK_INIT_DONE	0	R	Clock stabilization completion flag
6:5	Reserved	00	R/W	
4	CLK4_EN	1	R/W	ADC clock control 0: clock stop 1: clock enable
3	CLK3_EN	1	R/W	RF function (RFstate control) clock control 0: clock stop 1: clock enable
2	CLK2_EN	1	R/W	TX function (MOD) clock control 0: clock stop 1: clock enable
1	CLK1_EN	1	R/W	RX function(DEMOD) clock control 0: clock stop 1: clock enable
0	CLK0_EN	1	R/W	PHY function clock control 0: clock stop 1: clock enable

0x03[CLK_SET2]

Function: Clock setting 2 Address:0x03 (BANK0) Reset value:0x90

Bit	Bit name	Reset value	R/W	description
7	MSTR_CLK_EN	1	R/W	Logic block clock enable control 0: disable 1: enable
6	TCXO_EN	0	R/W	TCXO input control (1) (2) (3) 0: disable 1: enable
5	SPXO_EN	0	R/W	SPXO inputcontrol (1) (2) (3) 0: disable 1: enable
4	XTAL_EN	1	R/W	Crystal oscillator circuits control (1) (2) 0: disable 1: enable
3	RC32K_EN	0	R/W	On-chip RC oscillator circuits control 0: disable 1: enable
2:0	Reserved	000	R/W	

(Note)

- (1) In case of using TCXO/SPXO, set 0b1 to either TCXO_EN or SPXO_EN. And one of TCXO_EN, SPXO_EN, XTAL_EN_EN has to be 0b1.
- (2) RST0([RST_SET: B0 0x01(0)]) cannot clear these bits. In order to clear, hard reset (RESETN pin="L") or clear these bits through SPI from Host MCU.
- (3) In case of using TCXO/SPXO, this register must be programmed first. If other registers are set before programming this register, values set to other registers are not valid.

$0x04[PKT_CTRL1]$

Function:Packet configuration 1 Address:0x04 (BANK0) Reset value:0x00

Bit	Bit name	Reset value	R/W	description
7:6	EXT_PKT_MODE[1:0]	00	R/W	Extended Link Layer mode setting (Wireless M-Bus) 00: no Extended Link Layer 01: 2 byte extension (Extended Link Layer CI=0x8C) 10: 8 byte extension (Extended Link Layer CI=0x8D) 11: Reserved Please refer to the "Packet Format"
5	LEN_LF_EN	0	R/W	Length area bit order setting 0: MSB first 1: LSB first
4	DAT_LF_EN	0	R/W	Data area bit order setting 0: MSB first 1: LSB first
3	RX_EXTPKT_OFF	0	R/W	RX Extended Link Layer mode setting (Wireless M-Bus) 0: Automatically detecting "Extended Link Layer" 1: HW does not check "Extended Link Layer" automatically
2	IEEE802_15_4G_EN	0	R/W	IEEE 802.15.4g packet enable setting 0: disabel 1: enable (Note) While 0b1 is set, when in RX sate, bit 12 (CRC setting) and bit 11 (Whitening setting) in the L-field are identified and automatilly done proper process. LENGTH_MODE([PKT_CTRL2:B0 0x05(0)])=0b1 (2byte mode) setting shold be required. (Note) When in TX state, packet format is not identified automatilcally. WHT_SET([PKT_CTRL2:B0 0x08(2)] and CRC_LEN[1:0]([PKT_CTRL2:B0 0x05(5-4)] setting are required. Please refer to the "IEEE802.15.4g setting".
1:0	PKT_FORMAT[1:0]	00	R/W	Packet format setting 00: Format A (Wireless M-Bus) 01: Format B (Wireless M-Bus) 10: Format C (non Wireless M-BUS, general purpose format) 11: Reserved Please refer to the "Packet Format"

0x05[PKT_CTRL2]

Function:Packet configuration 2 Address:0x05 (BANK0) Reset value:0x1C

Bit	Bit name	Reset value	R/W	description
7	CRC_INIT_SEL	0	R/W	CRC initialized state setting 0: all "0" setting 1: all "1" setting
6	CRC_COMP_OFF	0	R/W	CRC complement value OFF setting 0: complement value 1: no complement value
5:4	CRC_LEN[1:0]	01	R/W	CRC length setting 00: CRC8 01: CRC16 10: CRC32 11: Reserved (Note) 0b00(CRC8) and 0b10(CRC32) are valid for Format C only For details, please refer to "CRC Function".
3	RX_CRC_EN	1	R/W	RX CRC setting 0: disable 1: enable (CRC calculation) (Note) If enable, CRC results are stored in [CRC_ERR_H/M/L: B0 0x13/14/15] registers.
2	TX_CRC_EN	1	R/W	TX CRC setting 0: disable 1: enable (CRC calculation) (Note) If enable, CRC(s) are automatically appended to the TX data.
1	Reserved	0	R/W	
0	LENGTH_MODE	0	R/W	Length field setting 0: 1 byte mode 1: 2 byte mode (Lengthis extended upper 3 bits) Other setting prohibit

Description:

- 1. In transmission (TX), based on the length from [TX_PKT_LEN_H/L:B0 0x7A/7B] registers, total data lenth will be calculated. Upon transmitting all data, TX complete.
- 2. In receiving (RX), based on the length from RX data, total data lenth will be calculated. Upon reception of all data, RX complete.
- 3. For details, please refer to the "Packet Format".

0x06[DRATE_SET]

Function:Data rate setting Address:0x06 (BANK0) Reset value:0xBB

Bit	Bit name	Reset value	R/W	description
				RX data rate setting (Note) By setting this register, optimal values automatically set to the [RX_RATE1_H/L: B1 0x04/05] and [RX_RATE2: B1 0x06] registers (Note) If RXDIO_CTRL[1:0]([DIO_SET:B0 0x0C(7-6)])=0b10 (enabling DIO mode), less than or equal 9,6 kbps cannot be used by setting this register. It is need to set specified values directly to the [RX_LATE1_H/L:B1 0x04/05] and [RX_LATE2:B1 0x06] registers according to the "Initialization table".
				Setting Data rate 0000 1.2kbps 0001 2.4kbps
7:4	RX_DRATE [3:0]	1011	R/W	0010 4.8kbps
				0011 9.6kbps
				0100 10kbps
				0101 11.52kbps
				0110 15kbps
				0111 20kbps
				1000 32.768kbps
				1001 40kbps
				1010 50kbps
				1011 100kbps
				1100 200kbps
				1101 300kbps
				1110 400kbps
				1111 500kbps
				TX data rate setting (Note) By setting this field, based on [TX_RATE_H/L: B1 0x02/03], optimal value is selected.
				Setting Data rate
				0000 1.2kbps
				0001 2.4kbps
				0010 4.8kbps
				0011 9.6kbps
				0100 10kbps
3:0	TX_DRATE [3:0]	1011	R/W	0101 11.52kbps
0.0	[0.0]	'•''		0110 15kbps
				0111 20kbps
				1000 32.768kbps
				1001 40kbps
				1010 50kbps
				1011 100kbps
				1100 200kbps
				1101 300kbps
				1110 400kbps
				1111 500kbps

- 1. In order to change data rate, other registers must be programmed.
- 2. For details, please refer to "Data rate modification setting".

0x07[DATA_SET1]

Function:TX/RX data configuration 1

Address:0x07 (BANK0)

Reset value:0x05

Bit	Bit name	Reset value	R/W	description
7	PB_PAT	0	R/W	TX preamble pattern setting 0: "01" pattern 1: "10" pattern
6	TX_FSK_POL	0	R/W	TX data polarity setting 0: data"1"=deviated to high frequency, data"0"=low frequency 1: data"1"=deviated to low frequency, data"0"= high frequency
5	RX_FSK_POL	0	R/W	RX data polarity setting 0: data"1"=deviated to high frequency, data"0"=low frequency 1: data"1"=deviated to low frequency, data"0"= high frequency
4	GFSK_EN	0	R/W	GFSK mode setting 0: GFSK disable (FSK mode) 1: GFSK enable For details, please refer to the "Modulation setting"
3:2	RX_DEC_SCHEME [1:0]	01	R/W	RX data coding mode setting 00: Manchester coding 01: NRZ coding 10: 3-out-of-6 coding 11: reserve
1:0	TX_DEC_SCHEME [1:0]	01	R/W	TX data coding mode setting 00: Manchester coding 01: NRZ coding 10: 3-out-of-6 coding 11: reserve

0x08[DATA_SET2]

Function:TX/RX data configuration 2

Address:0x08 (BANK0)

Reset value:0x00

Bit	Bit name	Reset value	R/W	description
7:5	Reserved	000	R/W	
4	SYNCWORD_SEL	0	R/W	SyncWord pattern selection setting 0: sync word pattern 1 1: sync word pattern 2 For details, please refer to the "SyncWord detection function".
3	2SW_DET_EN	0	R/W	Two SyncWords search setting 0: 2 Sync words searching disable 1: 2 Sync words searching enable For details, please refer to "SyncWord detection function".
2	2PB_DET_EN	0	R/W	Two RX preambles search setting 0: 2 preamble patterns search disable (distinguish between "01" pattern and "10" pattern) 1: 2preamble patterns search enable (do not distinguish between "01" pattern and "10" pattern)
1	MAN_POL	0	R/W	Manchester polarity setting 0: do not inverse polarity 1: inverse polarity
0	WHT_SET	0	R/W	Whitening setting 0: disable Whitening 1: enable Whitening

0x09[CH_SET]

Function:RF channel setting Address:0x09 (BANK0)

Bit	Bit name	Reset value	R/W	description
7:0	RF_CH[7:0]	0000_0000	R/W	RF channel setting (setting range: 0 to 255) For details, please refer to the "Channel frequency setting".

0x0A[RF_STATUS_CTRL]

Function: RF auto status transition control

Address:0x0A (BANK0)

Reset value:0x08

Bit	Bit name	Reset value	R/W	description
7:6	Reserved	00	R/W	
5	FAST_TX_EN	0	R/W	FAST_TX mode setting 0: disabel FAST_TX mode 1: enable FAST_TXmode (Note) If enable. move to the TX state after the data bytes writtm into the TX FIFO becomes grater than the value specified by TXFIFO_THRL[5:0] ([TXFIFO_THRL: B0 0x18(5-0)]).
4	AUTO_TX_EN	0	R/W	Automatic TX mode setting 0: disable automatic TX mode 1: enable automatic TX mode (Note) If enable, TX data specified by the Length are written to the TX FIFO, move to the TX state.
3:2	RXDONE_MODE[1:0]	10	R/W	RF state setting after packet reception completion. 00: move to IDLE state(TRX_OFF) 01: move to TX state 10: continue RX state 11: move to SLEEP state
1:0	TXDONE_MODE[1:0]	00	R/W	RF state setting after packet transmission completion. 00: move to IDLE state(TRX_OFF) 01: continue TX state 10: move to RX state 11: move to SLEEP state

(Note)

1. For details, please refer to the "LSI state transition control".

0x0B[RF_STATUS]

Function:RF state setting and status indication

Address:0x0B (BANK0)

Reset value:0x88

Bit	bit	Reset value	R/W	description
7:4	GET_TRX[3:0]	1000	R	RF state staus indication 0110: RX_ON (RX state) 1000: TRX_OFF (RF OFF state) 1001: TX_ON (TX state)
3:0	SET_TRX[3:0]	1000	R/W	RF state setting 0011: Force_TRX_OFF (force RF OFFsetting) 0110: RX_ON (RX setting) (*1) 1000: TRX_OFF (RF OFFsetting) (*3) 1001: TX_ON (TX setting) (*2) *1 During TX operation, setting RX_ON is possible. In this case, after TX completion, move to RX_ON state automatically. *2 During RX operation, setting TX_ON is possible. In this case, after RX completion, move to TX_ON state automatically. *3 If TRX_OFF is selected during TX or RX operation, after TX or RX operation completed, RF is turned off. If Force_TRX_OFF is selected during TX or RX operation, RF is turned off immediately.

[Description]

1. For details, please refer to "LSI state control"

0x0C[DIO_SET]

Function:DIO mode configuration Address:0x0C (BANK0)

Reset Value:0x00

Bit	Bit name	Reset value	R/W	description
7:6	RXDIO_CTRL[1:0]	00	R/W	RX DIO mode setting 00: disable DIO mode (FIFO mode) 01: continuous output mode DIO (demodulated data) and DCLK are constantly output 10: data output mode 1 DIO (undecoded data) and DCLK is output after SyncWord detection. 11: data output mode 2 DIO (decoded data) and DCLK is output after L-field detection. (Note) When measuring BER, set to 0b01. (Note) If 0b10, as FIFO is used for storing undecoded RX data, FIFO cannot be used. By setting bit0(DIO_START)=0b1, DIO and DCLK are output. Data after SyncWord is stored into FIFO. (Note) If 0b11, as FIFO is used for storing decoded RX data. By setting bit0(DIO_START) = 0b1, DIO and DCLK are output. Upon completion of data (specified by the Length) transfering, DIO and DCLK output are stop. Data after Length field is stored into FIFO.
5:4	TXDIO_CTRL[1:0]	00	R/W	TX DIO mode setting 00: disable DIO mode (FIFO mode) 01: DCLK is constantly output 10: DCLK is output after SyncWord. (Note) When setting 0b01/10, FIFOcannot be used. Encoded data must be sent to ML7406 at the falling edge of DCLK.
3	Reserved	0	R/W	
2	DIO_RX_COMPLETE	0	R/W	DIO RX completion setting 0: RX not finished 1: RX completion (Note) after RX completion, reset to 0b0 automatically.
1	Reserved	0	R/W	
0	DIO_START	0	R/W	DIO RX data output start setting 0: no OUTPUT (NOT stop output) 1: start OUTPUT (Note) Upon out of synchronization, reset to 0.

(Note)

1. For details, please refer to "DIO function".

0x0D[INT_SOURCE_GRP1]

Function:Interrupt status for INT0 to INT7

Address:0x0D (BANK0)

Reser value:0x00

Bit	Bit name	Reset value	R/W	description
7	INT[7]	0	R/W	Clock calibration completion interrupt 0: no interrupt 1: interrupt
6	INT[6]	0	R/W	Wake-up timer completion interrupt 0: no interrupt 1: interrupt (Note) lif this interrupt is cleared during SLEEP state, interrupt by wake-up timer completion will not generate.
5	INT[5]	0	R/W	FIFO-Full interrupt 0: no interrupt 1: interrupt (Note) Interrupt will generate, if FIFO usage becomes the threshold defined by TXFIFO_THRH[5:0]([TXFIFO_THRH: B0 0x17(5-0)]) in TX, or RXFIFO_THRL[5:0] ([RXFIFO_THRH: B0 0x19(5-0)]) in RX.
4	INT[4]	0	R/W	FIFO-Empty interrupt 0: no interrupt 1: interrupt (Note) Interrupt will generate, If FIFO usage is below threshold defined by TXFIFO_THRL[5:0] ([TXFIFO_THRL: B0 0x18(5-0)]) in TX, or RXFIFO_THRL[5:0] ([RXFIFO_THRL: B0 0x1A(5-0)] in RX,.
3	INT[3]	0	R/W	RF state transition completion interrupt 0: no interrupt 1: interrupt
2	INT[2]	0	R/W	PLL unlock interrupt 0: no interrupt 1: interrupt (unlock)
1	INT[1]	0	R/W	VCO calibration completion interrupt or Fuse access completion interrupt 0: no interrupt 1: interrupt (Note) After RESETN release (RESETN="H"), or by setting PDN_EN([SLEEP/WU_SET: B0 0x2D(2)])=0b1, returned from SLEEP state, Fise access interrupt completion occurs. VCO calibration should be done, after clearing INT[1].
0	INT[0]	0	R/W	Clock stabilization completion interrupt 0: no interrupt 1: interrupt

(Note)

- 1. Regardless of [INT_EN_GRP1: B0 0x10], this register value reflect internal status. For writing, only 0b0 is valid, writing 0b1is ignored.
- 2. If one of unmasked interrupt event occur, interrupt pin keeps output "Low".
- 3. During SLEEP state, interupts are not cleared immediately by this register. In this case, interrupts are cleared at the clock stabilizzation completion timing after return from the SLEEP state.

If need to clear interrupts during SLEEP state, please use [SLEEP_INT_CLR:B0 0x75] register.

0x0E[INT_SOURCE_GRP2]

Function: Interrupt status for INT8 to INT15 (RX)

Address:0x0E (BANK0)

Reset value:0x00

Bit	Bit name	Reset value	R/W	Description
7	INT[15]	0	R/W	Sync error interrupt 0: no interrupt 1: interrupt (Note) Upon SyncWord detection, while receiving packet (length specified by L-filed), if RX out-of-sync detected, interrupt will generate.
6	INT[14]	0	R/W	Field checking interrupt 0: no interrupt 1: interrupt
5	INT[13]	0	R/W	SyncWord detection interrupt 0: no interrupt 1: interrupt
4	INT[12]	0	R/W	RX FIFO access error interrupt 0: no interrupt 1: interrupt (Note) During RX using FIFO mode, if RX FIFO overrun or underrun detected, interrupt will generate.
3	INT[11]	0	R/W	RX Length error interrupt 0: no interrupt 1: interrupt
2	INT[10]	0	R/W	Diversity search completion interrupt 0: no interrupt 1: interrupt (Note) After diversity completion, interrupt will generate at SyncWord detection timing.
1	INT[9]	0	R/W	CRC error interrupt 0: no interrupt 1: interrupt (Note) Upon detection of CRC error, interrupt will generate. As Format A/B have multiple CRC-fields, error CRC block is indicated by [CRC_ERR_H/M/L: B0 0x13/14/15] registers. Format C has only one CRC field. Therefore MCU can detect CRC error with this interruption,
0	INT[8]	0	R/W	RX completion interrupt 0: no interupt 1: interrupt (Note) interrupt will generate, when RX data ,specified by the L-field, received.

[Description]

(1) If the following L-field data is received, RX Length error interruption will generate

i tile following L-field dat	erruption win generate.	
Packet format [PKT_CTRL1:B0 0x04]	Extension format [PKT_CTRL1: B0 0x04]	Length Indicating RX Length error
	No extension	Under 8 byte
Fromat A	2 byte extension	Under 12 byte
	8 byte extension	Under 16 byte
	No extension	Under 1 Obyte, 128 to 129 byte
Fromat B	2 byte extension	
	8 byte extension	Under 17byte, 19 to 20byte, 128 to 129 byte
		0 byte(CRC8)
Fromat C	-	1 byte(CRC16)
		2 byte(CRC32)

(Note)

- 1. Regardless of setting [INT_EN_GRP2: B0 0x11], this register value reflect internal status. For writing, only 0b0 is valid, writing 0b1 is ignored.
- 2. If one of unmasked interrerupt event occurs, inturrupt pin keeps output "Low".
- 3. During SLEEP state, interrupts are not cleared immediately by this register. In this case, interrupts are cleared at the clock stabilizzation completion timing after return from the SLEEP state.

If need to clear interrupts during SLEEP state, please use [SLEEP_INT_CLR:B0 0x75] register.

0x0F[INT_SOURCE_GRP3]

Function:Inverrupt status for INT16 to INT23 (TX)

Address:0x0F (BANK0)

Reset value:0x00

Bit	Bit name	Reset value	R/W	description
7	INT[23]	0	R/W	General purpose timer 2 interrupt 0: no interrupt 1: interrupt
6	INT[22]	0	R/W	General purpose timer 1 interrupt 0: no interrupt 1: interrupt
5	INT[21]	0	R/W	Reserved
4	INT[20]	0	R/W	TX FIFO access error interrupt 0: no interrupt 1: interrupt (Note) During TX using FIFO mode, if the FIFO overrun / underrun occur, or if the next packet data is written to the FIFO before transmitting, interrupt will generate.
3	INT[19]	0	R/W	TX lenghth error interrupt (1) 0: no interrupt 1: interrupt
2	INT[18]	0	R/W	CCA completion interrupt 0: no interrupt 1: interrupt
1	INT[17]	0	R/W	TX Data request accept completion interrupt 0: no interrupt 1: interrupt (Note) Interrupt will generate. when TX data, whose lenghth specified by [TX_PKT_LEN_H/L: B0 0x7A/7B] registers, written to the FIFO,
0	INT[16]	0	R/W	TX completion interrupt 0: no interrupt 1: interrupt (Note) Interrupt will generate when TX data, whose length specified by the [TX_PKT_LEN_H/L: B0 0x7A/7B] registers, transmitted,

[Description]

1. If the following L-field data is written to the [TX_PKT_LEN_H/L: B0 0x7A/7B] registers, TX Length error interrupt will generate.

Packet format	Extension format	1	
[PKT_CTRL1: B0 0x04]	[PKT_CTRL1: B0 0x04]	Length indicating TX Length error	
	No extension	Under 8 byte	
Fromat A	2 byte extension	Under 12 byte	
	8 byte extension	Under 16 byte	
	No extension	Lindor 10 byte 120 to 120 byte	
Fromat B	2 byte extension	Under 10 byte, 128 to 129 byte	
	8 byte extension	under 17 byte, 19 to 20 byte, 128 to 129 byte	
		0 byte (CRC8)	
Fromat C	-	1 byte (CRC16)	
		2 byte (CRC32)	

(Note)

- 1. Regardless of setting [INT_EN_GRP3: B0 0x12], this register value reflect internal status. For writing, only 0b0 is valid, writing 0b1 is ignored.
- 2. If one of unmasked interrerupt event occurs, inturrupt pin keeps output "Low".
- 3. During SLEEP state, interrupts are not cleared immediately by this register. In this case, interrupts are cleared at the clock stabilizzation completion timing after return from the SLEEP state.

 If need to clear interrupts during SLEEP state, please use [SLEEP_INT_CLR:B0 0x75] register.

0x10[INT_EN_GRP1]

Function:Interupt mask for INT0 to INT7

Address:0x10 (BANK0)

Reset value:0x00

Bit	Bit name	Reset value	R/W	description
7:0	INT_EN[7:0]	0x00	R/W	Enabling from interrupt 0 event to interrupt 7 event. 0: masking interrupt 1: generate interrupt

[Description]

- 1. Please refer to the "interrupt events tabe"
- 2. For event details, please refer to the [INT_SOURCE_GRP1: B0 0x0D] register.

0x11[INT EN GRP2]

Function:Interupt mask for INT8 to INT15

Address:0x11 (BANK0)

Reset value:0x00

	Bit	Bit name	Reset value	R/W	Description
-	7:0	INT_EN[15:8]	0x00	R/W	Enabling from interrupt 8 event to interrupt 15 event. 0: masking interrupt 1: generate interrupt

[Description]

- 1. Please refer to the "interrupt events tabe"
- 2. For event details, please refer to the [INT_SOURCE_GRP2: B0 0x0E] register.

0x12[INT EN GRP3]

Function: Interuptmask for INT16 to INT23

Address:0x12 (BANK0) Reset value:0x00

Bit	Bit name	Reset value	R/W	description
7:0	INT_EN[23:16]	0x00	R/W	Enabling from interrupt 16 event to interrupt 23 event. 0: masking interrupt 1: generate interrupt

[Description]

- 1. Please refer to the "interrupt events tabe"
- 2. For event details, please refer to the [INT_SOURCE_GRP3: B0 0x0F] register.

0x13[CRC ERR H]

Function:CRC error status (high byte)

Address:0x13 (BANK0)

Reset value:0x00

Bit	Bit name	Reset value	R/W	description
7:1	Reserved	000_0000	R/W	
0	CRC_ERR[16]	0	R	17th CRC error status 0: CRC OK or no CRC calculation 1: CRC error (Note) for Format A (Wireless M-Bus)

[Description]

1. For details, please refer to the "CRC function".

0x14[CRC_ERR_M]

Function:CRC error status (middle byte)

Address:0x14 (BANK0)

Reset value:0x00

Bit	Bit name	Reset value	R/W	Description
7	CRC_ERR[15]	0	R	16th CRC error status 0: CRC OK or no CRC calculation 1: CRC error (Note) For Format A (Wireless M-Bus)
6	CRC_ERR[14]	0	R	15th CRC error status 0: CRC OK or no CRC calculation 1: CRC error (Note) For Format A (Wireless M-Bus)
5	CRC_ERR[13]	0	R	14th CRC error status 0: CRC OK or no CRC calculation 1: CRC error (Note) For Format A (Wireless M-Bus)
4	CRC_ERR[12]	0	R	13th CRC error status 0: CRC OK or no CRC calculation 1: CRC error (Note) For Format A (Wireless M-Bus)
3	CRC_ERR[11]	0	R	12th CRC error status 0: CRC OK or no CRC calculation 1: CRC error (Note) For Format A (Wireless M-Bus)
2	CRC_ERR[10]	0	R	11th CRC error status 0: CRC OK or no CRC calculation 1: CRC error (Note) For Format A (Wireless M-Bus)
1	CRC_ERR[9]	0	R	10th CRC error status 0: CRC OK or no CRC calculation 1: CRC error (Note) For Format A (Wireless M-Bus)
0	CRC_ERR[8]	0	R	9th CRC error status 0: CRC OK or no CRC calculation 1: CRC error (Note) For Format A (Wireless M-Bus)

[Description]

1. For details, please refer to the "CRC function".

0x15[CRC_ERR_L]

function:CRC error status (low byte)

Address:0x15 (BANK0)

Reset value:0x00

Bit	Bit name	Reset value	R/W	Description
7	CRC_ERR[7]	0	R	8th CRC error status 0: CRC OK or no CRC calculation 1: CRC error (Note) For Format A (Wireless M-Bus)
6	CRC_ERR[6]	0	R	7th CRC error status 0: CRC OK or no CRC calculation 1: CRC error (Note) For Format A (Wireless M-Bus)
5	CRC_ERR[5]	0	R	6th CRC error status 0: CRC OK or no CRC calculation 1: CRC error (Note) For Format A (Wireless M-Bus)
4	CRC_ERR[4]	0	R	5th CRC error status 0: CRC OK or no CRC calculation 1: CRC error (Note) For Format A (Wireless M-Bus)
3	CRC_ERR[3]	0	R	4th CRC error status 0: CRC OK or no CRC calculation 1: CRC error (Note) For Format A (Wireless M-Bus)
2	CRC_ERR[2]	0	R	3rd CRC error status 0: CRC OK or no CRC calculation 1: CRC error (Note) For Format A or B (Wireless M-Bus)
1	CRC_ERR[1]	0	R	2nd CRC error status 0: CRC OK or no CRC calculation 1: CRC error (Note) For Format A or B (Wireless M-Bus)
0	CRC_ERR[0]	0	R	1st CRCerror status 0: CRC OK or no CRCcalculation 1: CRC error (Note) For Format A or B (Wireless M-Bus)

[Description]

1. For details, please refer to the "CRC function".

0x16[STATE_CLR]

Function:State clear control Address:0x16 (BANK0) Reset value:0x00

Bit	Bit name	Reset value	R/W	Description
7	STATE_CLR_EN	0	R/W	State clear enable 0: disabel State clear 1: enable State clear State clear to bit0 - 6 can be enabled depending on this bit.
6:5	Reseverd	00	R/W	
4	STATE_CLR4	0	R/W	Address check counter clear 1: Clear addres check counter. (Note) [ADDR_CHK_CTR_H/L:B1 0x62,63] registers wull be cleard (Note) bit7(STATE_CLR_EN)=0b1 is required. After clear operation and then automatically return to 0b0.
3	STATE_CLR3	0	R/W	Diversity State clear 1: Clear diversity state. (Note) bit7(STATE_CLR_EN)=0b1 is required. After clear operation and then automatical return to 0b0.
2	STATE_CLR2	0	R/W	PHY State clear 1: Clear PHY state. (Note) bit7(STATE_CLR_EN)=0b1 is required. After clear operation and then automatically return to 0b0.
1	STATE_CLR1	0	R/W	RX FIFO pointer clear 1: Clear write pointer/read pointer of FIFO. (Note) bit7(STATE_CLR_EN)=0b1 is required. After clear operation and then automatically return to 0b0.
0	STATE_CLR0	0	R/W	TX FIFO pointer clear 1: Clear write pointer/read pointer of FIFO. (Note) bit7(STATE_CLR_EN)=0b1 is required. After clear operation and then automatically return to 0b0.

[Description]

- 1. Please set enable bit (bit7) and execution bit (bit4 to bit0) at the same time. After completing a clearing operation, automatically 0b0 will be written to each bit.
- 2. After writing to the execution bits, (bit3 to bit0), clearing will be completed within (master clock period \times [RX_RATE_H/L: B1 0x04/05] \times 2[sec]) μ s.

0x17[TXFIFO_THRH]

Function: TX FIFO-Full level setting

Address:0x17 (BANK0) Reset value:0x00

Bit	Bit name	Reset value	R/W	Description
7	TXFIFO_THRH_EN	0	R/W	TX FIFO Full level enable 0: disable 1: enable
6	Reserved	0	R/W	
5:0	TXFIFO_THRH[5:0]	00_0000	R/W	TX FIFO Full level setting (Note) valid, if bit7(TXFIFO_THRH_EN)=0b1

- 1. For details, please refer to "TX FIFO usage notification function"
- 2. When TX FIFO data bemoes the threshold, INT[5] (group 1) interrupt will generate.

0x18[TXFIFO_THRL]

Function:TX FIFO-Empty level setting and TX trigger level setting in FAST TX mode

Address:0x18 (BANK0)

Reset value:0x00

Bit	bit name	Reset value	R/W	Description
7	TXFIFO_THRL_EN	0	R/W	TX FIFO Empty level enable 0: disable 1: enable
6	Reserved	0	R/W	
5:0	TXFIFO_THRL[5:0]	00_0000	R/W	TX FIFO Empty level setting and TX trigger level setting in FAST_TX mode (Note) valid if bit7(TXFIFO_THRH_EN)=0b1. (Note) TXFIFO_THRL[5:0] should be set larger than or equal 1. (Note) If using FAST_TX mode, please set 0b1 to the FAST_TX_EN ([RF_STATUS_CTRL: B0 0x0A(5)]). Empty level should be set less than or equal [FIFO write size(byte) – 3(byte)].

[Description]

- 1. For details, please refer to "TX FIFO usage notification function"
- 2. When FIFO data becomes below the threshold, INT[4] (gropu 1) interrupt will generate.

0x19[RX FIFO THRH]

Function: RX FIFO-Full level enable and level setting

Address:0x19 (BANK0)

Reset value:0x00

Bit	Bit name	Reset value	R/W	Description
7	RXFIFO_THRH_EN	0	R/W	RX FIFO Full level enable 0: disable 1: enable
6	Reserved	0	R/W	
5:0	RXFIFO_THRH[5:0]	00_0000	R/W	RX FIFO Full level settting (Note) valid if bit7(RXFIFO_THRH_EN)=0b1.

[Description]

- 1. For details, please refer to "RX FIFO usage notification function"
- 2. When RX FIFO data becomes the threshold, INT[5] (group1) interrupt will generate.

0x1A[RX FIFO_THRL]

Function: RX FIFO-Empty level enable and level setting (high byte)

Address:0x1A (BANK0)

Reset value:0x00

Bit	Bit name	Reset value	R/W	Description
7	RXFIFO_THRL_EN	0	R/W	RX FIFO Emptylevel enable 0: disable 1: enable
6	Reserved	0	R/W	
5:0	RXFIFO_THRL[5:0]	00_0000	R/W	RX FIFO Emptylevel setting (Note) valid if bit7(RXFIFO_THRL_EN)=0b1. (Note) Empty level should be set larger or equal 2.

- 1. For details, please refer to "RX FIFO usage notification function"
- 2. When RX FIFO data becomes below the threshold, INT[4] (group1) interrupt will generate.

0x1B[C_CHECK_CTRL]

Function: Control field detection setting Address: 0x1B (BANK0)

Reset value:0x00

Bit	Bit name	Reset value	R/W	Description
7	CA_RXD_CLR	0	R/W	Data processing if Field mismatch. 0: RX data continue 1: RX data abort (Note) if 0b1 is set, immediately abort RX data and wait for the next RX packet.
6	CA_INT_CTRL	0	R/W	Field check interrupt setting 0: generate interrupt if Field match. 1: generate interrupt if Field mismatch. (Note) selecte interupt will becomen INT[14] (group2).
5	Reserved	0	R/W	
4	C_FIELD_CODE5_EN	0	R/W	Control field pattern 5 check enable 0: disable 1: enable (Note) The pattern 5 has specific function. If received Control field data matches with the patterm 5, immediately generate interrupt and following M-filed and A-field check do not proceed. Field mismach interrupt will not generate.
3	C_FIELD_CODE4_EN	0	R/W	Control field code #4 check enable 0: disable 1: enable
2	C_FIELD_CODE3_EN	0	R/W	Control field code #3 check enable 0: disable 1: enable
1	C_FIELD_CODE2_EN	0	R/W	Control field code #2 check enable 0: disable 1: enable
0	C_FIELD_CODE1_EN	0	R/W	Control field code #1 check enable 0: disable 1: enable

[Description]

- 1. For details, please refer to the "Field check function".
- 2. When using field check function, RXDIO_CTRL[1:0] ([DIO_SET:B0 0x0C(7-6)]) =0b00 (FIFO mode) or 0b11 (data output mode 2) setting is required.

0x1C[M_CHECK_CTRL]

Function:manufacture ID field detection setting Address:0x1C (BANK0)

Reset value:0x00

Bit	Bit name	Reset value	R/W	Description
7:4	Reserved	0000	R/W	
3	M_FIELD_CODE4_EN	0	R/W	Manufacture ID field code #4 check enable 0: disable 1: enable
2	M_FIELD_CODE3_EN	0	R/W	Manufacture ID field code #3 check enable 0: disable 1: enable
1	M_FIELD_CODE2_EN	0	R/W	Manufacture ID field code #2 check enable 0: disable 1: enable
0	M_FIELD_CODE1_EN	0	R/W	Manufacture ID field code #1 check enable 0: disable 1: enable

- 1. For details, please refer to the "Field check function".
- 2. When using field check function, RXDIO_CTRL[1:0] ([DIO_SET:B0 0x0C(7-6)]) =0b00 (FIFO mode) or 0b11 (data output mode 2) setting is required.

0x1D[A_CHECK_CTRL]

Function: Address field detection setting

Address:0x1D (BANK0)

Reset value:0x00

Bit	Bit name	Reset value	R/W	Description
7:6	Reserved	00	R/W	
5	A_FIELD_CODE6_EN	0	R/W	Address field code #6 check enable 0: disable 1: enable
4	A_FIELD_CODE5_EN	0	R/W	Address field code #5 check enable 0: disable 1: enable
3	A_FIELD_CODE4_EN	0	R/W	Address field code #4 check enable 0: disable 1: enable
2	A_FIELD_CODE3_EN	0	R/W	Address field code #3 check enable 0: disable 1: enable
1	A_FIELD_CODE2_EN	0	R/W	Address field code #2 check enable 0: disable 1: enable
0	A_FIELD_CODE1_EN	0	R/W	Address field code #1 check enable 0: disable 1: enable

[Description]

- 1. For details, please refer to the "Field check function".
- 2. When using field check function, RXDIO_CTRL[1:0] ([DIO_SET:B0 0x0C(7-6)]) =0b00 (FIFO mode) or 0b11 (data output mode 2) setting is required.

0x1E[C_FIELD_CODE1]

Function: Control field setting (code #1)

Address:0x1E (BANK0)

Reset value:0x00

Bit	Bit name	Reset value	R/W	Description
7:0	C_FIELD_CODE1[7:0]	0000_0000	R/W	C-field setting code #1

[Description]

1. For details, please refer to the "Field check function".

0x1F[C FIELD CODE2]

Function: Control field setting (code #2)

Address:0x1F (BANK0)

Reset value:0x00

Bit	Bit name	Reset value	R/W	Description
7:0	C_FIELD_CODE2[7:0]	0000_0000	R/W	C-field setting code #2

[Description]

0x20[C_FIELD_CODE3]

Function: Control field setting (code #3)

Address:0x20 (BANK0)

Reset value:0x00

Bit	Bit name	Reset value	R/W	Description
7:0	C_FIELD_CODE3[7:0]	0000_0000	R/W	C-field setting code #3

[Description]

1. For details, please refer to the "Field check function".

0x21[C FIELD CODE4]

Function: Control field setting (code #4)

Address:0x21 (BANK0)

Reset value:0x00

Bit	Bit name	Reset value	R/W	Description
7:0	C_FIELD_CODE4[7:0]	0000_0000	R/W	C-field setting code #4

[Description]

1. For details, please refer to the "Field check function".

0x22[C_FIELD_CODE5]

Function: Control field setting (code #5)

Address:0x22 (BANK0)

Reset value:0x00

Bit	Bit name	Reset value	R/W	Description
7:0	C FIELD CODE5[7:0]	0000 0000	R/W	C-field setting code #5

[Description]

1. For details, please refer to the "Field check function".

0x23[M_FIELD_CODE1]

Function: Manufacture ID 1st byte setting (code#1)

Address:0x23 (BANK0)

Reset value:0x00

Bit	Bit name	Reset value	R/W	description
7:0	M_FIELD_CODE1[7:0]	0000_0000	R/W	M-field 1 st byte setting code #1

[Description]

1. For details, please refer to the "Field check function".

0x24[M_FIELD_CODE2]

Function: Manufacture ID 1st byte setting (code#2)

Address:0x24 (BANK0)

Reset value:0x00

Bit	Bit name	Reset value	R/W	description
7:0	M_FIELD_CODE2[7:0]	0000_0000	R/W	M-field 1 st byte setting code #2

[Description]

0x25[M_FIELD_CODE3]

Function: Manufacture ID 2nd byte setting (code#1)

Address:0x25 (BANK0)

Reset value:0x00

Bit	Bit name	Reset value	R/W	description
7:0	M_FIELD_CODE3[7:0]	0000_0000	R/W	M-field 2 nd byte setting code #1

[Description]

1. For details, please refer to the "Field check function".

0x26[M FIELD CODE4]

Function: Manufacture ID 2nd byte setting (code#2)

Address:0x26 (BANK0) Reset value:0x00

Bit	Bit name	Reset value	R/W	description
7:0	M FIELD CODE4[7:0]	0000 0000	R/W	M-field 2 nd byte setting code #2

[Description]

1. For details, please refer to the "Field check function".

0x27[A FIELD CODE1]

Function: Address field 1st byte setting

Adress:0x27 (BANK0) Reset value:0x00

Bit	Bit name	Reset value	R/W	description
7:0	A FIELD CODE1[7:0]	0000 0000	R/W	A-field setting (1 st byte)

[Description]

1. For details, please refer to the "Field check function".

0x28[A_FIELD_CODE2]

Function: Address field 2nd byte setting

Adress:0x28 (BANK0) Reset value:0x00

Bit	Bit name	Reset value	R/W	Description
7:0	A FIELD CODE2[7:0]	0000 0000	R/W	A-fieldsetting (2 nd byte)

[Description]

1. For details, please refer to the "Field check function".

0x29[A FIELD CODE3]

Function: Address field 3rd byte setting

Adress:0x29 (BANK0)

Reset value:0x00

Bit	Bit name	Reset value	R/W	Description
7:0	A_FIELD_CODE3[7:0]	0000_0000	R/W	A-field setting (3 rd byte)

[Description]

0x2A[A_FIELD_CODE4]

Function: Address field 4th byte setting

Adress:0x2A (BANK0) Reset value:0x00

Bit	Bit name	Reset value	R/W	Description
7:0	A_FIELD_CODE4[7:0]	0000_0000	R/W	A-field setting (4 th byte)

[Description]

1. For details, please refer to the "Field check function".

0x2B[A_FIELD_CODE5]

Function: Address field 5th byte setting

Adress:0x27B (BANK0)

Reset value:0x00

Bit	Bit name	Reset value	R/W	Description
7:0	A_FIELD_CODE5[7:0]	0000_0000	R/W	A-field setting (5 th byte)

[Description]

1. For details, please refer to the "Field check function".

0x2C[A_FIELD_CODE6]

Function: Address field 6th byte setting

Adress:0x2C (BANK0)

Reset value:0x00

Е	Bit	Bit name	Reset value	R/W	Description
	7:0	A FIELD CODE6[7:0]	0000 0000	R/W	A-field setting (6 th byte)

[Description]

0x2D[SLEEP/WU_SET]

Function:SLEEP exceution and Wake-up operation setting Address:0x2D (BANK0)

Reset value:0x08

Bit	Bit name	Reset value	R/W	Description
7	WUT_1SHOT_MODE	0	R/W	Wake-up timer operation mode setting 0: continue interval operation 1: after 1-SHOT operation, stop Wake-up timer.
6	WAKEUP_MODE	0	R/W	After Wake-up operation setting 0: move to RX_ON 1: move to TX_ON (Note) When continue operation timer is time-out, move to the SLEEP state. (Note) if TX FIFO is writen in the SLEEP state, TX Data request accept completion interrupt (INT[17] group 3) will generate after return from the SLEEP state. (Note) When 0b1 is set, TX Data should be transmitted before time out of continue operation timer.
5	WU_DURATION_EN	0	R/W	Continue operation timer enable setting after Wake-up. 0: After Wake-up, do not start continue operation timer 1: Afer Wake-up, start continue operation timer. (Note) When 0b1is set, and WAKEUP_MODE=0b0, if SyncWord or specified fields are not detected untill continue operation time-out, automatically move to the SLEEP state.
4	WAKEUP_EN	0	R/W	Wake up enable setting 0: disable Wake- up 1: enable wake-up (Note) When 0b1is set, after wake-up timer is time-out, automatically revover from the SLEEP state. Move to the state specified by bit6 (WAKEUP MODE).
3	RCOSC_MODE	1	R/W	RC oscillation circuits operation mode setting 0: continuous operation 1: operation when in the SLEEP state. (Note) Please refer to the "SLEEP setting".
2	WUT_CLK_SOURCE	0	R/W	Wake-up timer clock setting 0: external clock source (EXT_CLK Pin #10) 1: on-chip RC oscillation circuit (Note) Please refer to the "SLEEP setting".
1	Reserved	0	R/W	
0	SLEEP_EN	0	R/W	SLEEP mode control 0: recover from the SLEEPstate (normal operation) 1: move to the SLEEP state (Note) Please refer to the "SLEEP setting".

[Description]

1. For details, please refer to the "Wake-up timer"

0x2E[WUT_CLK_SET]

Function: Wake-up timer clock division setting

Address:0x2E (BANK0)

Reset value:0x00

Bit	Bit name	Reset value	R/W	description
7:4	WUDT_CLK_SET[3:0]	0000	R/W	Continuous operation timer clock setting 0000: no division (ML7406C prohibits this setting) 0001: divided by 128 0010: divided by 256 0011: divided by 512 0100: divided by 1024 0101: divided by 2048 0110: divided by 4096 0111: divided by 8192 Other setting: divided by 16384 (Note) the source clock is specified by WUT_CLK_SOURCE ([SLEEP/WU_SET: B0 0x2D(2)]).
3:0	WUT_CLK_SET[3:0]	0000	R/W	Wake-up timer clock setting 0000: no division 0001: divided by 128 0010: divided by 256 0011: divided by 512 0100: divided by 1024 0101: divided by 1024 0101: divided by 4096 0111: divided by 8192 Other setting: divided by 16384 (Note) the source clock is specified by WUT_CLK_SOURCE ([SLEEP/WU_SET: B0 0x2D(2)]).

[Description]

1. For details, please refer to the "Wake-up timer".

0x2F[WUT_INTERVAL_H]

Function: Wake-up timer interval setting (high byte)

Address:0x2F (BANK0)

Reset value:0x00

Bit	Bit name	Reset value	R/W	Description
7:0	WUT_INTERVAL[15:8]	0000_0000	R/W	Wake-up timer interval setting (high byte) (Note) combined toghether with [WUT_INTERVAL_H:B0 0x30] register. Timer interval can be programmed as follows: Wake-up timer interval = Wake-up timer clock cycle ([SLEEP/WU_SET:B0 0x2D(2)])* Division setting ([WUT_CLK_SET: B0 0x2E(3-0)]) * Wake-up timer interval setting [WUT_INTERVAL_H/L:B0 0x2F/30] (Note) WUT INTERVAL[15:0] should be set larger than or equal 2.

[Description]

1. For details, please refer to the "Wake-up timer".

0x30[WUT_INTERVAL_L]

Function: Wake-up timer interval setting (low byte)

Address:0x30 (BANK0)

Reset value:0x00

Bit	Bit name	Reset value	R/W	Description
7:0	WUT INTERVAL[7:0]	AL[7:0] 0000 0000 R/W	R/W	Wake-up timer interval setting (low byte)
		_		For details, please refer to [TIMER_INTERVAL_H: B0 0x2F] register

[Description]

1. For details, please refer to the "Wake-up timer".

0x31[WU_DURATION]

function: Continuous operation timer (after Wake-up) setting

Address:0x31 (BANK0)

Reset value:0x00

Bit	Bbit name	Reset value	R/W	Description
7:0	WU_DURATION[7:0]	0000_0000	R/W	Continuousoperation timer (after wake-up) setting Operation timer period = Wake-up timer clock cycle ([SLEEP/WU_SET:B0 0x2D(2)]) * Division setting ([WUT_CLK_SET: B0 0x2E(7-4)]) * Continuous operation timer setting (WU_DURATION[7:0]] (Note) WU_DURATION[7:0] should be set larger than or equal 1.

[Description]

1. For details, please refer to the "Wake-up timer".

0x32[GT SET]

Function: general purpose timer configuration

Address:0x32 (BANK0)

Reset value:0x00

Bit	Bit name	Reset value	R/W	Description
7:6	Reserved	00	R/W	
5	GT2_CLK_SOURCE	0	R/W	General purpose timer #2 clock sources setting 0: wake-up timer clock 1: 2MHz clock
4	GT2_START	0	R/W	General purpose timer #2 execution setting 0: pause timer counting 1: start or resume timer counting (Note) After time-out, reset to 0b0 automatically.
3:2	Reserved	00	R/W	
1	GT1_CLK_SOURCE	00	R/W	General purpose timer #1 clock sources setting 0: wake-up timer clock 1: 2MHz clock
0	GT1_START	0	R/W	General purpose timer #1 execution setting 0: pause timer counting 1: start or resume timer counting (Note) After time-out, reset to 0b0 automatically.

[Description]

1. For details, please refer to the "General purpose timer".

0x33[GT_CLK_SET]

Function:general purpose timer clock division setting Address:0x33 (BANK0)

Reset value:0x00

Bit	Bit name	Reset value	R/W	description
7:4	GT2_CLK_SET[3:0]	0000	R/W	General purpose timer clock #2 division setting 0000: no division 0001: divided by 128 0010: divided by 256 0011: divided by 512 0100: divided by 1024 0101: divided by 2048 0110: divided by 4096 0111: divided by 8192 1000: divided by 8192 1000: divided by 16384 1001: divided by 32768 Other setting: divided by 65536 (Note): The source clock is specified by GT2_CLK_SOURCE ([GT_SET:B0 0x32(5).
3:0	GT1_CLK_SET[3:0]	0000	R/W	General purpose timer clock #1 division setting 0000: no division 0001: divided by 128 0010: divided by 256 0011: divided by 512 0100: divided by 1024 0101: divided by 2048 0110: divided by 4096 0111: divided by 8192 1000: divided by 16384 1001: divided by 32768 Other setting: divided by 65536 (Note): The source clock is specified by GT1_CLK_SOURCE ([GT_SET:B0 0x32(1).

[Description]

1. For details, please refer to the "General purposetimer".

0x34[GT1_TIMER]

Function:General purpose timer #1 setting Address:0x34 (BANK0)

Reset value:0x00

Bit	Bit name	Reset value	R/W	description
7:0	GT1_TIMER[7:0]	0000_0000	R/W	General purpose timer #1 period setting General purpose timer #1period = General purpose timer clock cycle ([GT_SET:B0 0x32(1)]) * Division setting ([GT_CLK_SET:B0 0x33(3-0)]) * General purpose timer 1 period setting (GT1_TIMER[7:0])

[Description]

1. For details, please refer to the "General purpose timer"

0x35[GT2_TIMER]

Function:General purpose timer #2 setting Address:0x35 (BANK0) Reset value:0x00

Bit	Bit name	Reset value	R/W	description
7:0	GT2_TIMER[7:0]	0000_0000	R/W	General purpose timer #2 period setting General purpose timer #2 period = GT2 clock cycle ([GY_SET:B0 0x32(5)]) * Division setting ([GT_CLK_SET:B0 0x33(7-4)]) * GT2 timer period setting (GT2_TIMER[7:0])

[Description]

1. For details, please refer to the "General purpose timer"

0x36[CCA_IGNORE_LVL]

Function: ED threshold level setting for excluding CCA judgement

Address:0x36 (BANK0) Reset value:0xFE

Bit	Bit name	Reset value	R/W	Description
7:0	CCA_IGNORE_LVL[7:0]	1111_1110	R/W	ED threshold level setting for excluding CCA running average judgement (Note) An ED value exceeding this threshold, is not used for averaging defined by ED_AVG([ED_CTRL: B0 0x41(2-0)]). CCA result will not be judged until acquiring ED values reached averaging number. CCA_RSLT ([CCA_CTRL: B0 0x39(1-0)]) indicates 0b11 (evaluation on-going)

[Description]

1. For details operation of CCA, please refer to the "CCA(Clear Channel Assessment) function".

0x37[CCA_LVL]

Function:CCA threshold setting Address:0x37 (BANK0) Reset value:0x18

Bit	Bit name	Reset value	R/W	Description
7:0	CCA _LVL[7:0]	0001_1000	R/W	CCA thresold level setting (setting range:0 to 255) (Note) If ED value exceed this threshold, CCA_RST ([CCA_CTRL: B0 0x39(1-0)]) indicates 0b01 (carrier detected)

[Description]

1. For details operation of CCA, please refer to the "CCA(Clear Channel Assessment) function".

0x38[CCA_ABORT]

Function: Timing setting for forced termination of CCA operation

Address:0x38 (BANK0) Reset value:0xFF

Bit	Bit name	Reset value	R/W	Description
7:0	CCA _ABORT[7:0]	1111_1111	R/W	CCA forced termination timing setting (range:0 to 255) (Note) If set 0b0000_0000, this function becomes invalid. (Note) 1 bit resolution is 128 µs. (Note) Time out function for avoiding incompletion of CCA operation by carrier detection. If CCA operated period becomes the value defined by this register value × RSSI ADC clock setting (default setting :16 µs), IDLE detection is terminated and packet is aborted, RF state become TRX_OFF. (Note) 16 µs is in case of ADC clock = 2.0MHz If 1.73MHz is selected, register value × 18.5 µs. Please refer [ADC_CLK_SET:B1 0x08]) register.

[Description]

1. For details operation of CCA, please refer to the "CCA(Clear Channel Assessment) function".

0x39[CCA_CTRL]

Function:CCA control setting and result indication Address:0x39 (BANK0)

Reset value:0x00

Bit	Bit name	Reset value	R/W	Description
7	CCA_STOP	0	R/W	CCA continuous mode termination setting (terminate by set 0b1) (Note) If CCA_CPU_EN is executed, CCA will continuously perform until this bit is set to 0b1.
6	CCA_IDLE_EN	0	R/W	CCA IDLE detection mode enable setting 0: disable 1: enable
5	CCA_CPU_EN	0	R/W	CCA continuous mode enable setting 0: disable 1: enablee (Note) CCA will continue untill terminated by CCA_STOP bit.
4	CCA_EN	0	R/W	CCA execution command 0: not perform CCA 1: perform CCA (Note) After completion of CCA, reset to 0b0 automatically.
3	FAST_DET_MODE_EN	0	R/W	High speed carrier checking mode setting 0: during RXON, do not perform CCA. 1: during RXON, perform CCA. (Note) As a result of CCA, if no carrier found, automatically move to SLEEP state. Timer function can be combined together as well. For details, please refer to the "Wake-up timer".
2	CCA_ABORT_EN	0	R/W	CCA forced termination setting 0: do not terminate CCA 1: terminate CCA (Note) valid if bit6(CCA_IDLE_EN)=0b1.
1:0	CCA_RSLT[1:0]	00	R/W	CCA result 00: no carrier 01: carrier detected 10: CCA evaluation on-going (evaluating IDLE) 11: CCA evaluation on-going (ED value excluding CCA judgement acquisition.) Please refer [CCA_IGNORE_LVL:B0 0x36]) register. (Note) These bits are not cleared automatically. Every time CCA detects carrier, 0b00 should be set to clear these bits. Only 0b00 are valid.for writing. CCA completion is indicated by INT[18] (group 3).

- 1. For details operation of CCA, please refer to the "CCA(Clear Channel Assessment) function".
- 2. Please do not set 0b1 to both bit6(CCA_IDLE_EN) and bit5(CCA_CPU_EN) at the same time.

0x3A[ED_RSLT]

Function:ED value indication Address:0x3A (BANK0) Reset value:0x00

Bit	Bit name	Reset value	R/W	Description
7:0	ED_VALUE[7:0]	0000_0000	R	ED value indication (Note) If ED_RSLT_SET([ED_CTRL: B0 0x41(3)])=0b0, ED value is updated constantly during RX_ON. If ED_RSLT_SET=0b1, ED value is acquired at SyncWord detection timing. The value is updated at reading RX_FIFO.

[Description]

1. For details of ED value acquisition operation, please refer to "Energy detection value (ED value) acquisition function"

0x3B[IDLE_WAIT_H]

Function: IDLE detection period setting during CCA (high 2 bits)

Address:0x3B (BANK0)

Reset value:0x00

Bit	Bit name	Reset value	R/W	Description
7:2	Reserved	00_0000	R/W	
1:0	IDLE_WAIT[9:8]	00	R/W	 IDLE judgement max. wait time setting (high 2 bits) (Note) In CCA IDLE judgement, it is used for detecting long IDLE (no carrier) period. (Note)Combined toghether with [IDLE_WAIT_L:B0 0x3C] register. IDLE detection period is programmed as follows. IDLE detection period = ED value averaging period (default 8 times =128µs) + (IDLE_WAIT[9:0] * 16 µs) (Note: Above example is in case of ADC clock= 2MHz. If 1.73MHz is selected, IDLE_WAIT[9:0] × 18.5 µs. Please refer [ADC_CLK_SET:B1 0x08]) register.

[Description]

1. For details operation of CCA, please refer to "CCA(Clear Channel Assessment) function".

0x3C[IDLE WAIT L]

Function: IDLE detection period setting during CCA (low byte)

Address:0x3C (BANK0)

Reset value:0x00

Bit	Bit name	Reset value	R/W	Description
7:0	IDLE WAIT[7:0]	0000 0000	R/W	IDLE judgement max. wait time setting (low byte)
	[]	0000_0000		For details, please refer to [IDLE_WAIT_H:B0 0x3B] register

[Description]

1. For details operation of CCA, please refer to "CCA(Clear Channel Assessment) function".

0x3D[CCA_PROG_H]

Function: IDLE judgement elapsed time indication during CCA (high 2 bits)

Address:0x3D (BANK0)

Reset value:0x00

Bit	Bit name	Reset value	R/W	Description
7:2	Reserved	00_0000	R/W	
1:0	CCA_PROG[9:8]	00	R	IDLE judgement elapsed time indication during CCA (upper byte) (Note) combined toghether with [CCA_PROG_L:B0 0x3E] register. IDLE judgement elapsed time is calculated as follows. IDLE judgement elapsed time = ED value averaging period (default 8 times =128μs) + (IDLE_WAIT[9:0] * 16 μs) (Note: Above example is in case of ADC clock= 2MHz. If 1.73MHz is selected, IDLE_WAIT[9:0] × 18.5 μs. Please refer [ADC_CLK_SET:B1 0x08]) register.

[Description]

1. For details operation of CCA, please refer to "CCA(Clear Channel Assessment) function".

0x3E[CCA_PROG_L]

Function: IDLE judgement elapsed time indication during CCA (low byte)

Address:0x3E (BANK0)

Reset value:0x00

Bit	Bit name	Reset value	R/W	Description
7:0	CCA_PROG[7:0]	0000_0000	R	IDLE judgement elapsed time indication during CCA (low byte) For details, please refer to [CCA:PROG_H:B0 0x3D] register.

[Description]

1. For details operation of CCA, please refer to "CCA(Clear Channel Assessment) function".

0x3F-40[Reserved]

Function:

Address:0x3F-40 (BANK0)

Bit	Bit name	Reset value	R/W	Description
7:0	Reserved	0000_0000	R/W	

0x41[ED_CTRL]

Function:ED detection control setting

Address:0x41 (BANK0)

Reset value:0x83

Bit	Bit name	Reset value	R/W	Description
7	ED_CALC_EN	1	R/W	ED value calculation enable setting 0: disable ED value calculation 1: enable ED value calculation
6:5	Reserved	00	R/W	
4	ED_DONE	0	R/W	ED value calculation completion flag 0: calculation on-going (not completed) 1: calculation completion
3	ED_RSLT_SET	0	R/W	ED indication setting in [ED_RSLT:B0 0x3A] register 0: ED value constantly updated 1: ED value acquired at SyncWord detection timing (Note) if 0b1 is set, the ED value is updated at reading RX_FIFO. Please read [ED_RSLT:B0 0x3A] register after reasing RX_FIFO.
2:0	ED_AVG[2:0]	011	R/W	ED value calculation average times setting 000: 1 time 001: 2 times average 010: 4 times average 011: 8 times average 100: 1 6times average 101: 32 times average Other thanabove: 16times average (Note) ED_AVG[2:0] must be set when ED value calculation stop (TRX_OFF state or TX_ON state or bit7(ED_CALC_EN)=0b0).

[Description]

1. For details of ED value acquisition operation, please refer to "Energy detection value(ED value)acquisition function"

0x42[TXPR_LEN_H]

Function:TX preamble length setting (high byte)

Address:0x42 (BANK0)

Reset value:0x00

Bit	Bit name	Reset value	R/W	Description
7:0	TXPR_LEN[15:8]	0000_0000	R/W	TX preamblelength setting (high byte) TX preamble length = (specified value x2) bits (Note) combined toghether with [TXPR_LEN_L: B0 0x43] register. (Note) Do not set value less than 0x0010 to TXPR_LEN[15:0].ML7406 requires more than or equal 0x0010 preamble for synchronization. (Note) If diversity is used, this parameter may have to change according to the data rate. Please refer to the "Initialization table"

0x43[TXPR_LEN_L]

Function:TX preamble length setting (low byte)

Address:0x43 (BANK0)

Bit	Bit name	Reset value	R/W	Description
7:0	TXPR LENI7:01	01 0001 0000	R/W	TX preamble length setting (low byte)
7.0	TAT IN_ELECTION	0001_0000		For details, please refer to [TXPR_LEN_H:B0 0x42] register.

0x44[POSTAMBLE_SET]

Function:Postamble length and pattern setting

Address:0x44 (BANK0) Reset value:0x10

Bit	Bit name	Reset value	R/W	Description
7	Reserved	0	R/W	
6:4	POSTAMBLE_LEN[2:0]	001	R/W	Postamble length setting Postamble length = (specified value × 2) bits.
3	Reserved	0	R/W	
2:1	POSTAMBLE_PAT[1:0]	00	R/W	Postamble pattern setting 00: "01" pattern repetition 01: "10" pattern repetition 10: repetition of the last CRC pattern and its inversion 11: reserved
0	POSTAMBLE_EN	0	R/W	Postamble enable setting 0: no postamble addition 1: postamble addition

0x45[SYNC_CONDITION1]

Function: RX preamble setting and ED threshold check setting

Address:0x45 (BANK0)

Reset value:0x08

Bit	Bit name	Reset value	R/W	Description
7	SYNC_ED_EN	0	R/W	ED threshold check enable setting during synchronization 0: disable ED threshold check during synchronization 1: enable ED threshold check during synchronization (Note) ED threshold value is set to the [SYNC_CONDITION2: B0 0x46] register.
6	Reserved	0	R/W	
5:0	RXPR_LEN[5:0]	00_1000	R/W	RX preamble checking length setting (setting range: 0 to 32, unit: bit) (Note) if lager than 0b10_0000, interpret as 0b10_0000.

0x46[SYNC_CONDITION2]

Function:ED threshold setting during synchronization detection

Address:0x46 (BANK0)

Reset value:0x00

Bit	Bit name	Reset value	R/W	Description
7:0	SYNC_ED_TH[7:0]	0000_0000	R/W	ED thereshold value setting during synchronization (Note) If SYNC_ED_EN ([SYNC_CONDITION1: B0 0x45(7)])=0b1, ED thereshold value become valid. (Note) If acquired ED value does not exceed this threshold, synchronization is not detected.

0x47[SYNC_CONDITION3]

Function:Bit error tolerance setting in RX preamble and SyncWord detection.

Address:0x47 (BANK0)

Bit	Bit name	Reset value	R/W	Description
7:4	SW_RCV[3:0]	0000	R/W	Error tolerance value (bits) in the SyncWord (setting range: 0 to 15)
3:0	PB_RCV[3:0]	0000	R/W	Error tolerance value (bits) in the preamble (setting range: 0 to 15)

0x48[2DIV_CTRL]

Function: Antenna diversity setting

Address:0x48 (BANK0)

Reset value:0x00

Bit	Bit name	Reset value	R/W	Description
7:6	Reserved	00	R/W	
5	ANT_CTRL1	0	R/W	ANT control bit 1
4	ANT_CTRL0	0	R/W	ANTcontrol bit 0
3	INV_ANT_SW	0	R/W	ANT_SW polarity setting
2	INV_TRX_SW	0	R/W	TRX_SW polarity setting
1	2PORT_SW	0	R/W	Antenna switch setting 0: SPDT switch is used 1: DPDT switch is used
0	2DIV_EN	0	R/W	Antenna diversity setting 0: no antenna diversity 1: antenna diversity

[Description]

1. For details, please refer to "diversity function"

0x49[2DIV_RSLT]

Function: Antenna diversity result status

Address:0x49 (BANK0)

Reset value:0x00

Bit	Bit name	Reset value	R/W	Description
7	2DIV_DONE	0	R	Antenna diversity searchcompletion status 0: diversity search on-going (not completed) 1: diversity search completion
6:2	Reserved	0_0000	R/W	
1:0	2DIV_RSLT[1:0]	01	R	Antenna diversityresult status 01: Antenna 1 10: Antenna 2

[Description]

- 1. For details, please refer to "diversity function"
- 2. This register is updated at SyncWord detection timing in each packet.

0x4A[ANT1_ED]

Function: Acquired ED value by antenna 1

Address:0x4A (BANK0)

Bit	Bit name	Reset value	R/W	Description
				Acquired ED value by antenna 1
				(Note) Set 2DIV_EN([2DIV_CTRL: B0 0x48(0)])=0b1. This register is
7:0	ANT1_ED[7:0]	0000_0000	R	updated at SyncWord detection timing in each packet. However, if diversity
				completion interrupt- ([INT_SOURCE_GRP2: B0 0x0D(2)]) is cleared, this
				register will be cleared.

0x4B[ANT2_ED]

Function: Acquired ED value by antenna 2

Address:0x4B (BANK0)

Reset value:0x00

Bit	Bit name	Reset value	R/W	Description
7:0	ANT2_ED[7:0]	0000_0000	R	Acquired ED value by antenna 2 (Note) Set 2DIV_EN([2DIV_CTRL: B0 0x48(0)])=0b1. This register is updated at SyncWord detection timing in each packet. However, if diversity completion interrupt- ([INT_SOURCE_GRP2: B0 0x0D(2)]) is cleared, this register will be cleared.

0x4C[ANT_CTRL]

Function:TX/RX antenna control setting

Address:0x4C (BANK0)

Reset value:0x00

Bit	Bit name	Reset value	R/W	Description
7:6	Reserved	00	R/W	
5	RX_ANT	0	R/W	Antenna setting for RX 0: antenna 1 1: antenna 2 (Note) Valid if bit4(RX_ANT_EN)=0b01. This bit defines antenna during RX_ON.
4	RX_ANT_EN	0	R/W	Antenna settinge enable for RX 0: disable 1: enable
3:2	Reserved	00	R/W	
1	TX_ANT	0	R/W	Antenna setting for TX 0: antenna 1 1: antenna 2 (Note) Valid If bit0(TX_ANT_EN)=0b01. This bit defines antenna during TX_ON.
0	TX_ANT_EN	0	R/W	Antenna settinge enable for TX 0: disable 1: enable

[Description]

1. For details, please refer to "diversity function"

0x4D[MON_CTRL]

Function: Monitor function setting

Address:0x4D (BANK0)

Reset value:0x01

Bit	Bit name	Reset value	R/W	Description
7	BER_MODE	0	R/W	BER measurement mode setting 0: normal operation mode 1: BER measurement mode (Note) By setting BER measurement mode, demodulated data/clock are output from DIO/DCLK. For details, please refer to the "BER measurement setting"
6	FIFOMODE_MON	0	R/W	FIFO mode monitor setting 0: FIFO mode and DIO/DCLKare not output. 1: FIFOmode and DIO/DCLKare output. (Note) Demodulated data/clock are output from DIO/DCLK.
5	TEMP_ADC_OUT	0	R/W	Temperature information signal digital output setting 0: do not display temperature information (digital) 1: display temperature information (digital) (Note) This value can be read from [TEMP: B1 0x09]. For details, please refer to "temperature display function"
4	TEMP_OUT	0	R/W	TEMP value analog output setting 0: Temperature information (analog) will not be output from A_MON pin. 1: Temperature information (analog) will be output from A_MON pin. For details, please refer to "temperature display function"
3:0	DMON_SET	0001	R/W	Digital monitor output signal selection setting 0000: "L" output 0001: CLK_OUT output 0010: PLL lock detection signal output 0011: Synchronization detection signal output Other setting: reserved

0x4E[GPIO0_CTRL]

Function:GPIO0 pin (pin #16) cpnfiguration setting

Address:0x4E (BANK0)

Bit	Bit name	Reset value	R/W	Description
7	GPIO0_INV	0	R/W	GPIO0 output signal polarity setting
6	GPIO0_OD	0	R/W	GPIO0 output OpenDrain setting
5	GPI00_FORCEOUT	0	R/W	GPIO0 forced output value setting 0: "L" output 1: "H" output (Note) the setting of bit7(GPIO0_INV) does not affect on this output value.
4	GPIO0_FORCEOUTEN	0	R/W	GPIO0 forced output enable setting 0: disable 1: enable (output the value according to bit5(GPIO0_FORCEOUT) setting.)
3	Reserved	0	R/W	
2:0	GPIO0_IO_CFG[2:0]	111	R/W	GPIO0 input-output signal setting 000: [output] "L" level 001: [output] antenna switch control signal 1 (TX-RX switch signal: TRW_SW) 010: [output] antenna switch control signal 2 (antenna switch signal: ANT_SW) 011: [output] external PA control signal 100: [input/output] data (DIO) 101: [output] data clock (DCLK) 110: [output] digital monitor signal please refer DEMON_SET[3:0] ([MON_CTRL:B0 0x4D(3-0)]). 111: [output] interrupt notification signal (SINTN)

0x4F[GPIO1_CTRL]

Function: GPIO1 pin (pin #17) configuration setting Address:0x4F (BANK0) Reset value:0x06

Bit	Bit name	Reset value	R/W	Description
7	GPIO1_INV	0	R/W	GPIO1 output signal polarity setting
6	GPIO1_OD	0	R/W	GPIO1 output OpenDrainsetting
5	GPIO1_FORCEOUT	0	R/W	GPIO1 output forced setting 0: "L" output 1: "H" output (Note) the setting of bit7(GPIO1_INV) does not affect on this output value.
4	GPIO1_FORCEOUTEN	0	R/W	GPIO1 forced output enable setting 0: disable 1: enable (output the value according to bit5(GPIO1_FORCEOUT) setting.)
3	Reserved	0	R/W	
2:0	GPIO1_IO_CFG [2:0]	110	R/W	GPIO1 input-output signal selection setting 000: [output] "L" level 001: [output] antenna switch control signal 1 (TX-RX switch signal: TRW_SW) 010: [output] antenna switch control signal 2 (antenna switch signal: ANT_SW) 011: [output] external PA control signal 100: [input/output] data (DIO) 101: [output] data clock (DCLK) 110: [output] digital monitor signal please refer DEMON_SET[3:0] ([MON_CTRL:B0 0x4D(3-0)]) 111: [output] Interrupt notification signal (SINTN)

0x50[GPIO2_CTRL]

Function:GPIO2 pin (pin #18) configuration setting Address:0x50 (BANK0)

Bit	Bit name	Reset value	R/W	Description
7	GPIO2_INV	0	R/W	GPIO2 output signal polarity setting
6	GPIO2_OD	0	R/W	GPIO2 output OpenDrain setting
5	GPIO2_FORCEOUT	0	R/W	GPIO2 forced output value setting 0: "L" output 1: "H" output (Note) the setting of bit7(GPIO2_INV) does not affect on this output value.
4	GPIO2_FORCEOUTEN	0	R/W	GPIO2 forced output enable setting 0: disable 1: enable (output the value according to bit5(GPIO2_FORCEOUT) setting.)
3	Reserved	0	R/W	
2:0	GPIO2_IO_CFG [2:0]	010	R/W	GPIO2 input-output signal selection setting 000: [output] "L" level 001: [output] antenna switch control signal 1 (TX-RX switch signal: TRW_SW) 010: [output] antenna switch control signal 2 (antenna switch signal: ANT_SW) 011: [output] external PA control signal 100: [input/output] data (DIO) 101: [output] data clock (DCLK) 110: [output] digital monitor signal please refer DEMON_SET[3:0] ([MON_CTRL:B0 0x4D(3-0)]) 111: [output] Interrupt notification signal (SINTN)

0x51[GPIO3_CTRL]

Function:GPIO3 pin (pin#19) configuration setting Address:0x51 (BANK0)

Reset value:0x01

Bit	Bit name	Reset value	R/W	Description
7	GPIO3_INV	0	R/W	GPIO3 output signal polarity setting
6	GPIO3_OD	0	R/W	GPIO3 output OpenDrain setting
5	GPIO3_FORCEOUT	0	R/W	GPIO3 output forced setting 0: "L" output 1: "H" output (Note) the setting of bit7(GPIO3_INV) does not affect on this output value.
4	GPIO3_FORCEOUTEN	0	R/W	GPIO3 forced output enable setting 0: disable 1: enable (output the value accoding to bit5(GPIO3_FORCEOUT) setting.)
3	Reserved	0	R/W	
2:0	GPIO3_IO_CFG [2:0]	001	R/W	GPIO3 input-output signal selection setting 000: [output] "L" level 001: [output] antenna switch control signal 1 (TX-RX switch signal:TRW_SW) 010: [output] antenna switch control signal 2 (antenna switch signal:ANT_SW) 011: [output] external PA control signal 100: [input/output] data (DIO) 101: [output] data clock (DCLK) 110: [output] digital monitor signal please refer DEMON_SET[3:0] ([MON_CTRL:B0 0x4D(3-0)]) 111: [output] Interrupt notification signal (SINTN)

0x52[EXTCLK_CTRL]

Function: EXT_CLK pin (pin #10) control Address:0x52 (BANK0)

Bit	Bit name	Reset value	R/W	Description
7	EXTCLK_INV	0	R/W	EXT_CLK output signal polarity setting
6	EXTCLK OD	0	R/W	EXT_CLK output OpenDrain setting
5	EXTCLK_FORCEOUT	0	R/W	EXT_CLK output forced setting 0: "L" output 1: "H" output (Note) the setting of bit7(EXTCLK_INV) does not affect on this output value.
4	EXTCLK _FORCEOUTEN	0	R/W	EXT_CLK forced output enable setting 0: disable 1: enable (output the value according to bit5(EXTCLK_FORCEOUT) setting.)
3	Reserved	0	R/W	
2:0	EXTCLK_IO_CFG [2:0]	000	R/W	EXT_CLK input/outputsignal selection setting 000: [input] external clock (32 kHz) 001: [output] antenna switch control signal 1 (TX/RXswitch signal: TRX_SW) 010: [output] antenna switch control signal 2 (antenna switch signal: ANT_SW) 011: [output] external PA control signal 100: [input/output] During RX: RX data output, During TX: TX data input 101: [output] During RX: RX clock output During TX: TX clock output 110: [output] Digital monitor signal 111: [output] interrupt notificationsignal (SINTN) output

0x53[SPI/EXT_PA_CTRL]

Function: SPI interface(SDI/SDO)pins/external PAcontrol

Address:0x53 (BANK0)

Reset value:0x00

Bit	Bit name	Reset value	R/W	Description
7:6	Reserved	00	R/W	
5	SDO_CFG	0	R/W	SDO pin (pin #12) input/output signal setting 0: [output] SDO (SPI interface) 1: [output] SDO (when SCEN pin (pin #14) = "L") SCEN pin =when "H", DCLK output For details, please refer to the "DIO function"
4	SDI_CFG	0	R/W	SDI pin (pin #15) input/ouput signal setting 0: [input] SDI(SPI interface) 1: [input] SDI (when SCEN pin (pin #14)= "L" [input/output] DIO (when SCEN pin = "H") For details, please refer to the "DIO function"
3:2	Reserved	00	R/W	
1	EXT_PA_CNT	0	R/W	External PA control signal control timing setting 0: Signal is output at the same timing of PA ramp-up. 1: Signal is output when the state is move to TX state.
0	EXT_PA_EN	0	R/W	External PA control timing enable setting 0: disable (at the same timing of PA_ON) 1: enable (valid bit1(EXT_PA_CNT) setting)

0x54[IF_FREQ_H]

Function: IF frequency setting (high byte)

Address:0x54 (BANK0)

Reset value:0x38

Bit	Bit name	Reset value	R/W	Description
7:0	IF_FREQ[15:8]	0011_1000	R/W	IF frequency setting (high byte) (Note) combined together with [IF_FREQ_L:B0 0x55] register (Note) Please set the value of 1/2 of the IF frequency value. For details, please refer to the "IF frequency setting".

0x55[IF_FREQ_L]

Function:IFfrequency setting (low byte)

Address:0x55 (BANK0)

Reset value:0xB6

Bit	Bit name	Reset value	R/W	Description
7:0	IF_FREQ[7:0]	1011_0110	R/W	IF frequency setting (low byte) For details, please refer to [IF_FREQ_L] register

[Description]

1. For details, please refer to "IF frequency setting"

0x56[IF_FREQ_CCA_H]

Function: IF frequency setting during CCA operation (high byte)

Address:0x56 (BANK0)

Bit	Bit name	Reset value	R/W	Description
7:0	IF_FREQ_CCA[15:8]	0011_1000	R/W	IF frequency setting during CCA operation (high byte) (Note) combined together with [IF_FREQ_CCA_L] register. (Note) Please set the value of 1/2 of the IF frequency value. For details, please refer to the "IF frequency setting".

0x57[IF_FREQ_CCA_L]

Function: IF frequency setting during CCA operation (low byte)

Address:0x57 Reset value:0xB6

Bit	Bit name	Reset value	R/W	Description
7:0	IF_FREQ_CCA [7:0]	1011_0110	R/W	IF frequency setting during CCA operation (low byte) For details, please refer to [IF_FREQ_CCA_H] register

[Description]

For details, plese refer to "IF frequency setting"

0x58[BPF ADJ H]

Function:Bandpass filter capaciance adjustment (high 2 bits)

10

Address:0x58 (BANK0) Reset value:0x02

BPF_C[9:8]

Bit name Reset value R/W Description 7:2 00_0000 R/W Bandpass filter capacitance adjustment (high 2 bits)

(Note) combined together with [BPF_ADJ_L:B0 0x59] register.

R/W

0x59[BPF ADJ L]

1:0

Function:Bandpass filter capacitance adjustment (low byte)

Address:0x59 (BANK0)

Reset value:0x4A

Bit	Bit name	Reset value	R/W	Description
7:0	BPF_C[7:0]	0100_1010	R/W	Bandpass filter capaciatnce adjustment (low byte) For details, please refer to [BPF_ADJ_H:B0 0x58] register

0x5A-0x5B[Reserved]

Function: Reserved

Address:0x5A-0x5B (BANK0)

Bit	Bit name	Reset value	R/W	Description
7:0	Reserved	0000 0000	R/W	

0x5C[BPF_CO]

Function:Band pass filter frequency band adjustment coefficient

Address:0x5C (BANK0)

Reset value:0x80

Bit	Bit name	Reset value	R/W	Description
7:0	BPF_CO[7:0]	1000_0000	R/W	Band pass filter frequency band adjustment coefficient bit7: × 1 bit6: × 1/2 bit5: × 1/4 bit4: × 1/8 bit3: × 1/16 bit2: × 1/32 bit1: × 1/64 bit0: × 1/128

[Description]

1. For details, please refer to "BPF frequency band setting"

0x5D[BPF_CO_CCA]

Function:Band pass filter frequency band adjustment coefficient during CCA.

Address:0x5D (BANK0)

Reset value:0x80

Bit	Bit name	Reset value	R/W	DEscription
7:0	BPF_CO_CCA[7:0]	1000_0000	R/W	Band pass filter frequency band adjustment coefficient during CCA. bit7: × 1 bit6: × 1/2 bit5: × 1/4 bit4: × 1/8 bit3: × 1/16 bit2: × 1/32 bit1: × 1/64 bit0: × 1/128

[Description]

1. For details, please refer to "BPF frequency band setting"

0x5E[IFF_ADJ_H]

Function: Demodulator DC level adjustment (high 2 bit)

Address:0x5E (BANK0)

Reset value:0x00

Bit	Bit name	Reset value	R/W	Description
7:2	Reserved	00_0000	R/W	
1:0	FDET ADJ[9:8]	00	R/W	Demodulator DC level adjustment (high 2 bits)

(Note)

1. Please use the value specified in the "Initialization table".

0x5F[IFF_ADJ_L]

Function:Demodulator DC level adjustment (low byte)

Address:0x5F (BANK0)

Reset value:0x00

Bit	Bit name	Reset value	R/W	Description
7:0	FDET_ADJ[7:0]	0000_0000	R/W	Demodulator DC level adjustment (low byte)

(Note)

1. Please use the value specified in the "Initialization table".

0x60[IFF_ADJ_CCA_H]

Function:Demodulator DC level adjustment during CCA (high 7 bits)

Address:0x60 (BANK0)

Reset value:0x54

Bit	Bit name	Reset value	R/W	Description
7	Reserved	0	R/W	
6:0	FDET_ADJ_CCA1[6:0]	101_0100	R/W	Demodulator DC level adjustment 1 during CCA

(Note)

1. Please use the value specified in the "Initialization table".

0x61[IFF_ADJ_CCA_L]

Function:Demodulator DC level adjustment during CCA (low byte)

Address:0x61 (BANK0)

Reset value:0x00

Bit	Bit name	Reset value	R/W	Description
7:5	FDET_ADJ_CCA3[2:0]	000	R/W	Demodulator DC level adjustment 3 during CCA
4:0	FDET_ADJ_CCA2[4:0]	0_0000	R/W	Demodulator DC level adjustment 2 during CCA

(Note)

1. Please use the value specified in the "Initialization table".

$0x62[OSC_ADJ1]$

Function: Coarse adjustment of load capacitance for oscillation circuits

Address:0x62 (BANK0)

Reset value:0x08

Bit	Bit name	Reset value	R/W	Description
7:4	Reserved	0000	R/W	
3:0	OSC ADJ ROUGH[3:0]	1000	R/W	Load capacitance coarse adjustment - approximately 0.7pF/step

[Description]

1. For details, please refer to "oscillation circuits adjustment"

0x63[OSC_ADJ2]

Function: Fine adjustment of load capacitance for oscillation circuits

Address:0x63 (BANK0)

Reset value:0x40

Bit	Bit name	Reset value	R/W	Description
7	Reserved	0	R/W	
6:0	OSC_ADJ_FINE[6:0]	100_0000	R/W	Fine adjustment of load capacitance - approximately 0.02pF/step (adjustment range 0x00 to 0x77)

[Description]

1. For details, please refer to "oscillation circuits adjustment"

0x64[OSC_ADJ3]

Function:Oscillation circuits bais adjustment

Address:0x64 (BANK0)

Reset value:0x09

Bit	Bit name	Reset value	R/W	Description
7:5	Reserved	000	R/W	
4:0	OSC_BIAS[4:0]	0_1001	R/W	Oscillation circuits bais adjustment 00000: 0 µA to 11111: 720 µA

0x65[OSC_ADJ4]

Function:Oscillation circuits bais adjustment (high speed start-up)

Address:0x65 (BANK0)

Reset:0x1F

Bit	Bit name	Reset value	R/W	Description
7:5	Reserved	000	R/W	
4:0	OSC_BIAS2[4:0]	1_1111	R/W	Oscillation circuits bais adjustment (high speed start-up) 00000: 0uA to 11111: 720uA

0x66[RSSI_ADJ]

Function: RSSI value adjustment

Address:0x66 (BANK0)

Reset value:0x00

Bit	Bit name	Reset value	R/W	Description
7	RSSI_ADD	0	R/W	Adjustment direction setting 0: decrease (set -) 1: increase (set +)
6:5	Reserved	00	R/W	
4:0	RSSI_ADJ[4:0]	0_0000	R/W	RSSI compensation value setting

[Description]

1. For details, please refer to "Energy detection value (ED value) adjustment"

0x67[PA_MODE]

Function: PA mode setting/PA regulator coarse adjustment

Address:0x67 (BANK0)

Reset value:0x10

Bit	Bit name	Reset value	R/W	Description
7:6	Reserved	00	R/W	
5:4	PA_MODE[1:0]	01	R/W	PA mode setting 00: 0dBm mode 01: 10dBm mode 10: 13dBm mode 11: (not allowed)
3:0	PA_REG[3:0]	0000	R/W	PA regulator output voltage coarse adjustment setting

[Description]

1. For details, please refer to the "PA adjustment".

0x68[PA_REG_FINE_ADJ]

Function:PA regulator fine adjustment

Address:0x68 (BANK0)

Reset value:0x10

Bit	Bit name	Reset value	R/W	Description
7:5	Reserved	000	R/W	
4:0	PA_REG_FINE_ADJ [4:0]	1_0000	R/W	PA regulator output voltage fine adjustment setting (Note) PA output power can be adjusted in steps of less than 0.2dB.

[Description]

1. For details, please refer to the "PA adjustment".

$0x69[PA_ADJ]$

Function:PA gain adjustment Address:0x69 (BANK0)

Reset value:0x07

Bit	Bit name	Reset value	R/W	Description
7:4	Reserved	0000	R/W	
3:0	PA_ADJ[3:0]	0111	R/W	PA output gain adjustment setting

[Description]

1. For details, please refer to the "PA adjustment".

0x6A[Reserved]

Function:

Address:0x6A (BANK0)

Bit	Bit name	Reset value	R/W	Description
7:0	Reserved]	0010_1110	R/W	

0x6B[Reserved]

Function:

Address:0x6B (BANK0)

Reset value:0x00

Bit	Bit name	Reset value	R/W	Description
7:0	Reserved	0000_0000	R/W	

0x6C[IQ_MAG_ADJ]

Function: IF IQ amplitude balance adjustment

Address:0x6C (BANK0)

Reset value:0x08

Bit	Bit name	Reset value	R/W	Description
7:4	Reserved	00	R/W	
3:0	MAG_ADJ[3:0]	1000	R/W	IQ signal amplitude balance adjustment

[Description]

1. Image rejection can be adjusted by MAG ADJ[3:0]. For details, please refer to the "I/Q adjustment".

0x6D[IQ_PHASE_ADJ]

Function: IF IQ phase balance adjustment

Address:0x6D (BANK0)

Reset value:0x20

Bit	Bit name	Reset value	R/W	Description
7:6	Reserved	00	R/W	
5:0	PHASE ADJ[5:0]	10 0000	R/W	IQ signal phase balance adjustment

[Description]

1. Image rejection can be adjusted by PHASE_ADJ [5:0]. For details, please refer to the "I/Q adjustment".

0x6E[VCO_CAL]

Function: VCO calibration setting or status indication

Address:0x6E (BANK0)

Reset value:0x00

Bit	Bit name	Reset value	R/W	Description
7	CAL_WR_EN	0	R/W	VCO calibration mode setting 0: automatic setting mode 1: forced writing mode
6:0	VCO_CAL[6:0]	000_0000	R/W	Current VCO calibration value setting (Note) In automatic setting mode, current calibration value is indicated. (Note) In forced writing mode, the value set to VCO_CAL[6:0] will be applied as the calibration value. (If CAL_WR_EN= 0b0, the set value is ignored.) (Note) after completion of clock stabilization, the value will be 0b100_0000.

[Description]

1. For details, please refer to the "VCO adjustment".

0x6F[VCO_CAL_START]

Function: VCO calibration execution

Address:0x6F (BANK0)

Reset value:0x00

Bit	Bit name	Reset valu	R/W	Description
7:5	Reserved	000	R/W	
4	AUTO_VCOCAL_EN	0	R/W	Automatic VCO calibration execution enable 0: disable automatic VCO calibration 1: execute automatic calibration when recovering from the SLEEP state.
3:1	Reserved	000	R/W	
0	VCO_CAL_START	0	R/W	Execute VCO calibration 0: execution completed 1: execution started

[Description]

1. For details, please refer to the "VCO adjustment"

0x70[CLK_CAL_SET]

Function:Low speed clock calibration control

Address:0x70 (BANK0)

Reset value:0x00

Bit	Bit name	Reset value	R/W	Description
7:4	CLK_CAL_DIV[3:0]	0000	R/W	Clock division control for low speed clock calibration 0000: no division 0001: no division Other setting: division setting
3:1	Reserved	000	R/W	
0	CLK_CAL_START	0	R/W	Execute low speed clock calibration 0: execution completion 1: execution start

[Description]

1. For details, please refer to the "Low speed clock shift detection function"

0x71[CLK_CAL_TIME]

Function:Low speed clock calibration time setting

Address:0x71 (BANK0)

Reset value:0x00

Bit	Bit name	Reset value	R/W	Description
7:6	Reserved	00	R/W	
5:0	CLK_CAL_TIME [5:0]	00_0000	R/W	Low speed Clock calibration time setting Calibration time = Wake-up timer clock cycle ([SLEEP/WU_SET:B0 0x2D(2)]) * [set value]

[Description]

1. For details, please refer to the "Low speed clock shift detection function"

0x72[CLK_CAL_H]

Function:Low speed clock calibartion result indication (high byte)

Address:0x72 (BANK0)

Reset value:0xFF

Bit	Bit name	Reset value	R/W	Description
7:0	CLK_CAL [15:8]	1111_1111	R	Low speed clock calibartion result (high byte)

[Description]

1. For details, please refer to the "Low speed clock calibartion Auxiliary function"

0x73[CLK_CAL_L]

Function:Low speed clock calibartion result indication (low byte)

Address:0x73 (BANK0)

Reset value:0xFF

Bit	Bit name	Reset value	R/W	Description
7:0	CLK_CAL [7:0]	1111_1111	R	Low speed clock calibartion result (low byte)

[Description]

1. For details, please refer to the "Low speed clock calibartion Auxiliary function"

0x74[Reserved]

Function:

Address:0x74 (BANK0)

Reset value:0x00

Bit	Bit name	Reset value	R/W	Description
7:0	Reserved	0000 0000	R/W	

0x75[SLEEP_INT_CLR]

Function:Interrupt clear setting during SLEEP state

Address:0x75 (BANK0)

Bit	Bit name	Reset value	R/W	Description
7:1	Reserved	000_0000	R/W	
0	SLEEP_INT_CLR	0	R/W	Interrupt clear setting during SLEEP 0: not clear interrupt 1: clear interrupt (Note) During SLEEP state, interrupt cannot be cleared by [INT_SOURCE_GRP*: B0 0x0D/0E/0F] registers. By setting this bit to 0b1, interrupt can be cleared. This register can be written only during SLEEP state. After return from SLEEP state, this bit becomes 0b0. (Note) Clear is applicable to whole interrupts [INT_SOURCE_GRP*: B0 0x0D/0E/0F].

0x76[RF_TEST_MODE]

Function:TX test pattern setting

Address:0x76 (BANK0)

Reset value:0x00

Bit	Bit name	Reset value	R/W	Description
7:6	Reserved	00	R/W	
5	TEST5	0	R/W	CW output
4	TEST4	0	R/W	"01" pattern output
3	TEST3	0	R/W	All "0" output
2	TEST2	0	R/W	All "1" output
1	TEST1	0	R/W	PN9 output
0	TEST_EN	0	R/W	Test mode enable 0: disable test mode 1: enable test mode

[Description]

- 1. During normal operation, all bits have to be 0b0.
- 2. More than one bits are enabled at the same time, lowest bit is valid.
- 3. Data rate is value in the TX_DRATE[3:0] ([DRATA_SET: B0 0x06(3-0)]).
- 4. During PN9 output setting, any PN9 polynomial can be specified by [WHT_CFG: B1 0x66].

Most of the commercial Bit error metter use PN9's polynomial as x^9+x^4+1 , which is equivalent to [WHT_CFG: B1 0x66]=0x08.

0x77[STM_STATE]

Function:State machine status/synchronization status indication

Address:0x77 (BANK0)

Bit	Bit name	Reset value	R/W	Description
7	MODE_DET_RSLT	0	R	Receiving mode indication 0: Receive mode T 1: Receive mode C (Note) Indication is valid when 2MODE_DET_EN([2MODE_DET:B3 0x23(0)]) =0b1. (Note) Updated at every SyncWord detection
6	SYNC_STATE	0	R	RX synchronization detection status 0: not synchronized 1: synchronization detected
5	SW_DET_RSLT	0	R	Receiving format indication 0: detect SyncWord #1 (Format A) 1: detect SyncWord #2 (Foomat B) (Note) Indication is valid whne Packet format A or B is selected. PKT_FORMAT[1:0] ([PKT_CTRL1: B0 0x04(1-0)])=0b00 or 0b01 (Note)Updated at every SyncWord detection timing.
4:0	PHY_STATE[4:0]	0_0000	R	State machine status 0_0000: IDLE state 0_0001: Preamble transmission state 0_0010: SyncWord transmission state 0_0011: L-field transmission state 0_0100: Data area TX state 0_0101: Postamble transmission state 0_0101: TX delay waiting state 0_0110: TX delay waiting state 0_0111: DIO TX state 1_0010: SyncWord detection state 1_0010: L-field receiving state 1_0100: Data area receiving state 1_0111: DIO RX state

0x78[FIFO_SET]

Function:FIFO readout setting Address:0x78 (BANK0) Reset value:0x00

Bit	Bbit name	Reset value	R/W	Description
7:1	Reserved	000_0000	R/W	
0	FIFO_R_SEL	0	R/W	FIFO readout setting 0: read RX FIFO 1: read TX FIFO (Note) [RD_FIFO:B0 0x7F] register is used for reading both RX FIFO and TX FIFO. If 0b1 is set in order to read TX FIFO, please readout data length specified by [TX_PKT_LEN_H/L: B0 0x7A/7B] registers or set STATE_CLR1 ([STATE_CLR:B0 0x16(1)]) = 0b1 (RX FIFO pointer clear). If FIFO read is aborted without RX FIFO pointer clear and then change to read RX FIFO, reading starts from the interrupting pointer. Therefore RX FIFO could not be read correctly

0x79[RX_FIFO_LAST]

Function: RX FIFO data usage status indication

Address:0x79 (BANK0)

Reset value:0x00

Bit	Bit name	Reset value	R/W	Description
7:6	Reserved	00	R/W	
5:0	RX_FIFO_LAST[5:0]	00_0000	R	RX FIFO data usage status (range: 0 to 63) For details, please refer to the "FIFO control function"

0x7A[TX_PKT_LEN_H]

Function:TX packet length setting (high byte)

Address:0x7A (BANK0)

Reset value:0x00

Bit	Bit name	Reset value	R/W	Description
7:0	TX_PKT_LEN[15:8]	0000_0000	R/W	TX packet length setting (high byte) (Note) setting TX data Length. FormatA: Length excluded L-field and CRC-field FormatB/C: Length excluded L-field (Note) combined toghether with [TX_PKT_LEN_L: B0 0x7B] register. high byte value is valid when LENGTH_MODE([PKT_CTRL: B0 0x05 (0)])=0b1 For details, please refer to the "FIFO control function"

0x7B[TX_PKT_LEN_L]

Function: TX packet length setting (low byte)

Address:0x7B (BANK0)

	Bit	Bit name	Reset value	R/W	Description
Ī	7:0	TX_PKT_LEN[7:0]	0000_0000	R/W	TX packet length setting (low byte) For details, please refer to [PKT_LEN_H: B0 0x7A] register.

0x7C[WR_TX_FIFO]

Function:TX FIFO Address:0x7C (BANK0) Reset value:0x00

Bit	Bit name	Reset value	R/W	Description
7:0	TX_FIFO[7:0]	0000_0000	w	TX FIFO (Note) TX data strored in the TX FIFO is one packet, regardless of packet length. If one packet is stored - (after generation of TX data request acceptance completion interrupt (INT[17] (group 3) and before generation of TX completion interrupt, INT16 (group3) - and if the next writing access is atempted, the TX FIFO will be over-wrtten. And TX FIFO access error interrupt, INT[20] (group3) will be generated. In case of TX FIFO access error occurs, set STATE_CLR0([STATE_CLR: B0 0x16(0)])=0b1. (TX FIFO pointer clear) For details, plese refer to "FIFO control function".

0x7D[RX_PKT_LEN_H]

Function: RX packet length indication (upper byte)

Address:0x7D (BANK0)

Reset value:0x00

Bit	Bit name	Reset value	R/W	Description
7:0	RX_PKT_LEN[15:8]	0000	R	RX packet Length value (high byte) (Note) combined toghether with [RX_PKT_LEN_L: B0 0x7E] register. (Note) FormatA/B/C: indicating packet length excluding L-field.

0x7E[RX_PKT_LEN_L]

Function: RX packet length indication (low byte)

Address:0x7E (BANK0)

Reset value:0x00

Bit	Bit name	Reset value	R/W	Description
7:0	RX_PKT_LEN[7:0]	0000_0000	R	RX packet Lengthvalue (low byte) For details, please refer to [RX_PKT_LEN_H: B0 0x7D] register.

0x7F[RD_FIFO]

Function: FIFO read Address:0x7F (BANK0) Reset value:0x00

Bit	Bit name	Reset value	R/W	Description
7:0	RD_FIFO[7:0]	0000_0000	R	FIFO read (Note) read FIFO specified by FIFO_R_SEL([FIFO_SET: B0 0x78(0)]). (Note) When RX operation, RX data can be stored up to one packet length, regardless of packet length. If one packet data is stored and the next packet is received, the FIFO will be over-written. (Note) if FIFO read is aborted, set STATE_CLR1 ([STATE_CLR:B0 0x16(1)]) = 0b1 (RX FIFO pointer clear). For details pless refer to the "FIFO control function"

•Register Bank1

0x00[BANK_SEL]

Function: Register accesss selection

Address:0x00 (BANK1)

Reset value:0x11

Bit	Bit name	Reset value	R/W	DEscription
7	B3_ACEN	0	R/W	BANK3 register access enable 0: access disable 1: access enable
6	B2_ACEN	0	R/W	BANK2 register access enable 0: access disable 1: access enable BANK2
5	B1_ACEN	0	R/W	BANK1 register access enable 0: access disable 1: access enable BANK1
4	B0_ACEN	1	R/W	BANK0 register access enable 0: access disable 1: access enable BANK0
3-0	BANK[3:0]	0001	R/W	BANK switching 0001: BANK0 access 0010: BANK1 access 0100: BANK2 access 1000: BANK3 access Others than above: not allowed

[Description]

- 1. Do not access BANK1 registers during VCO calibration.
- 2. Register acess can be done by CLK_INIT_DONE([CLK_SET1: B0 0x02(7)])=0b0. But the register related to RF status has to be changed after CLK_INIT_DONE=0b1.

0x01[CLK_OUT]

Function:CLKOUT output frequency setting

Address:0x01 (BANK1)

Bit	Bit name	Reset value	R/W	Description
7:0	CLK_DIV[7:0]	0000_0101	R/W	Output clock frequency setting The following formula is used. 0000_0000: 26MHz 0000_0001: 13MHz 0000_0001: 8.66MHz (Duty ratio ···High:Low=1:2) 0000_0011: 6.5MHz 0000_0100: 4.3MHz 0000_0101: 3.3MHz 0000_0110: 2.6MHz 0000_0111: 0.86MHz 0000_0111: 0.86MHz 0000_1000: 0.43MHz Other setting: The following formula is used to define output frequency. Output frequency = 26 / (16 × [set value] + 2) [MHz] For example, If value is 0x09, Output frequency = 26 / (16 × 9 + 2) = 178kHz

0x02[TX_RATE_H]

Function: TX data rate conversion setting (high 4 bits)

Address:0x02 (BANK1)

Reset value:0x00

Bit	Bit name	Reset value	R/W	Description
7:4	Reserved	0000	R/W	
3:0	TX_RATE[11:8]	0000	R/W	TX data rate conversion setting (high 4 bits) (Note) combined toghether with [TX_RATE_L: B1 0x03] register. When a given data rate is set, the following formula is used. Setting value = round (26MHz / 13 / [a given data rate]) For details, please refer to the "Data rate setting function"

0x03[TX_RATE_L]

Function:TX data rate conversion setting (low rate)

Adress:0x03 (BANK1)

Reset value:0x14

Bit	Bit name	Reset value	R/W	Description
7:0	TX_RATE[7:0]	0001_0100	R/W	TX data rate conversion setting (low byte) For details, please refer to [TX_RATE_H:B1 0x02] register.

0x04[RX_RATE1_H]

Function: RX data rate concversion setting 1 (high 4 bits)

Address:0x04 (BANK1)

Reset value:0x00

Bit	Bit name	Reset value	R/W	Description
7:4	Reserved	0000	R/W	
3:0	RX_RATE1[11:8]	0000	R/W	RX data rate conversion setting (high 4 bits) (Note) combined toghether with [RX_RATE1_L: B1 0x05] register. When a given data rate is set, the following formula is used. Setting value = round (26MHz / {[a given data rate] × [RX_RATE2]register)}) For details, please refer to the "Data rate setting function"

0x05[RX_RATE1_L]

Function: RX data rate coversion setting 1 (low byte)

Address:0x05 (BANK1)

Bit	Bit name	Reset value	R/W	Description
7:0	RX RATE1[7:0]	0000 0100	R/W	RX data rate conversion setting 1 (low byte)
		_		For details, please refer to "[RX_RATE1_H:B1 0x04]" register.

0x06[RX_RATE2]

Function:Data rate conversion setting

Address:0x06 (BANK1)

Reset value:0x41

Bit	Bit name	Reset value	R/W	Description
7	Reserved	0	R/W	
6:0	RX_RATE2[6:0]	0100_0001	R/W	RX data rate conversion setting 2 (setting range: 30 to 127) (Note) using together with RX_RATE1_H/L:B1 0x04/05] registers. (Note) Do not set value below 0x1D to this register. For details, please refer to [RATE_SET1_H:B1 0x04] register.

0x07[Reserved]

Function:Reserved Address:0x07(BANK1) Reset value:0xFE

Bit	Bit name	Reset value	R/W	Description
7:0	Reserved	0000_0000	R/W	

0x08[ADC_CLK_SET]

Function: RSSI ADC clock frequency setting

Address:0x08 (BANK1)

Reset value:0x50

Bit	Bit name	Reset value	R/W	Description
7	Reserved	0	R/W	
6:5	OSC_W_SEL[1:0]	10	R/W	Clock stabilization waiting time setting 00: 500µs 01: 250µs 10: 50µs 11: 10µs (Note) When start-up or return from SLEEP state, the waiting time for clock stabilization is set by this register. For details, please refer to the "Start-up time" in the "Timing Chart".
4	ADC_CLK_SEL	1	R/W	RSSI ADC clock setting 0: 1.73MHz 1: 2.0MHz
3:0	Reserved	0000	R/W	

0x09[TEMP]

Function:Temperature digital value indication

Address:0x09(BANK1)

Bi	t Bit name	Reset value	R/W	Description
7:) TEMP[7:0]	0000_0000	R/W	Temperature value (Note) When using temperature measurement function, 75kΩ resistor must be connected to A_MON pin and set 0b1 to TEMP_ADC_OUT ([MON_CTRL: B0 0x4D(5)]). Temperature information is available except in the SLEEP state. For details, please refer to "Temperature display function".

0x0A[Reserved]

Function:Reserved Address:0x0A(BANK1) Reset value:0x00

Bit	Bit name	Reset value	R/W	Description
7:0	Reserved	0000_0000	R/W	

0x0B[PLL_LOCK_DETECT]

Function:PLL lock detection setting

Address:0x0B (BANK1)

Reset value:0x81

Bit	Bit name	Reset value	R/W	Description
7	PLL_LD_EN	1	R/W	State contor after PLL unlock detection when TX operation 0: Keep TX state 1: Stop TX state forcibly by Force_TRX_OFF (Note) after PLL unlock detection, generates INT2 (group 1) and then move to selected state. (Note) during RX operation, after PLL unlock detection, generates INT2 and keep RX state.
6:0	TIM_PLL_LD[6:0]	000_0001	R/W	PLL lock detection time adjustment Detection time = ([set value] * 8µs +1µs (default: 9 µs) (Note) If PLL lock detection signal ="H" period exceeds the detection time, determined as PLL lock. If detecting PLL lock detection signal ="L", determined as PLL unlock immediately.

(Note)

- 1. When move to IDLE state due to PLL unlock detection, please clear PLL unlock interrupt (INT[2] group1) before transmitting or receive next data. And [RF_STATE:B0 0x0B] registers write access must be after 5 μs.
- 2. For details about PLL unlock detection condition and timing, please refer to the "VCO adjustment".

0x0C[GAIN_MTOL]

Function: Threshold level setting for switching "middle gain" to "low gain"

Address:0x0C (BANK1)

Reset value:0x1E

Bit	Bit name	Reset value	R/W	Description
7:6	Reserved	00	R/W	
5:0	GC_TRIM_ML[5:0]	01_1110	R/W	Gain switching threshold value (middle gain to low gain)

[Description]

1. For details operation of RSSI adjustment using this register, please refer to the "Energy detection value(ED value) adjustment"

(Note)

- 1. Please use the value specified in the "Initialization table".
- 2. This register value and [GAIN_LTOM] value have to be GC_TRIM_ML > GC_TRIM_LM.

0x0D[GAIN LTOM]

Function: Threshold level setting for switching "low gain" to "middle gain"

Address:0x0D (BANK1)

Reset value:0x02

Bit	Bit name	Reset value	R/W	Drescription
7:6	Reserved	00	R/W	
5:0	GC_TRIM_LM[5:0]	00_0010	R/W	Gain switching threshold (low gain to middle gain)

[Description]

1. For details operation of RSSI adjustment using this register, please refer to the "Energy detection value(ED value) adjustment"

(Note)

- 1. Please use the value specified in the "Initialization table".
- 2. This register value and [GAIN_MTOL] value have to be GC_TRIM_ML > GC_TRIM_LM.

0x0E[GAIN_HTOM]

Function: Threshold level setting for switching "high gain" to "middle gain"

Address:0x0E (BANK1)

Reset value:0x9E

Bit	Bit name	Reset value	R/W	Description
7	GF_FIX_EN	1	R/W	Gain switching setting 0: constantly updating 1: Upon synchronization established, gain will be fixed. (Note) During BER measurement, set 0b0.
6	Reserved	0	R/W	
5:0	GC_TRIM_HM[5:0]	01_1110	R/W	Gain switching threshold value (high gain to middle gain)

[Description]

1. For details operation of RSSI adjustment using this register, please refer to the "Energy detection value(ED value) adjustment"

(Note)

- 1. Please use the value specified in the "Initialization table".
- 2. This register value and [GAIN_MTOH] value have to be GC_TRIM_HM > GC_TRIM_MH.

0x0F[GAIN MTOH]

Function: Threshold level setting for switching "middle gain" to "high gain"

Address:0x0F (BANK1)

Reset value:0x02

Е	3it	Bit name	Reset value	R/W	Description
7	:6	Reserved	00	R/W	
5	:0	GC_TRIM_MH[5:0]	00_0010	R/W	Gain switching threshold value (middle gain to high gain)

[Description]

1. For details operation of RSSI adjustment using this register, please refer to the "Energy detection value(ED value) adjustment"

(Note)

- 1. Please use the value specified in the "Initialization table".
- This register value and [GAIN_MTOM] value have to be GC TRIM HM > GC TRIM MH.

0x10[RSSI_ADJ_M]

Function: RSSI offset value setting during middle gain operation

Address:0x10 (BANK1)

Reset value:0x15

Bit	Bit name	Reset value	R/W	Description
7:6	Reserved	00	R/W	
5:0	RSSI_GCADD [5:0]	01_0101	R/W	RSSI offset value during middle gain operation

[Description]

1. For details operation of RSSI adjustment using this register, please refer to the "Energy detection value(ED value) adjustment"

(Note)

1. Please use the value specified in the "Initialization table".

0x11[RSSI_ADJ_L]

Function: RSSI offset value setting during low gain operation

Address:0x11 (BANK1)

Reset value:0x2B

Bit	Bit name	Reset value	R/W	Description
7:6	Reserved	00	R/W	
5:0	RSSI_GCADD2[5:0]	10_1011	R/W	RSSI offset value during low gain operation

[Description]

1. For details operation of RSSI adjustment using this register, please refer to the "Energy detection value(ED value) adjustment"

(Note)

1. Please use the value specified in the "Initialization table".

0x12[RSSI_STABLE_TIME]

Function: RSSI stabilization wait time setting

Address:0x12 (BANK1)

Reset value:0x01

Bit	Bit name	Reset value	R/W	Description
7:6	Reserved	00	R/W	
5:4	AD_MASK_SET[1:0]	00	R/W	RSSI convergence wait time setting (setting range 0 to 3) Wait time = ([set value] +2) * ADC clock setting (default:16 µs) (Note) waiting time until RSSI value become stable during this period no gain switching. (Note) 16 µs is in case of ADC clock = 2.0MHz If 1.73MHz is selected, RSSI ADC clock = 18.5 µs. Please refer [ADC_CLK_SET:B1 0x08]) register.
3:0	RSSI_STABLE[3:0]	0001	R/W	After gain switching, RSSI stabilization wait time setting (setting range 1 to 15) Wait time = ([set value]+1) * ADC clock setting (default :16 µs) (Note)This period is RSSI stabilization time after gain switching. During this period, RSSI value is not used for ED value calculation. (Note) 16 µs is in case of ADC clock = 2.0MHz If 1.73MHz is selected, RSSI ADC clock = 18.5 µs. Please refer [ADC CLK SET:B1 0x08]) register.

(Note)

1. Do not set 0x00 to this register. Please use the value specified in the "Initialization table".

0x13[RSSI_MAG_ADJ]

Function:Scale factor setting for ED value conversion

Address:0x13 (BANK1)

Reset value:0xD4

Bit	Bit name	Reset value	R/W	Description
7:4	RSSI_MAG_M[3:0]	1101	R/W	RSSI multiply value setting (setting range: 1 to 15)
3	RSSI_MAG_D3	0	R/W	RSSI division value 1/8 setting 0: do not apply 1: apply
2	RSSI_MAG_D2	1	R/W	RSSI division value 1/4 setting 0: do not apply 1: apply
1	RSSI_MAG_D1	0	R/W	RSSI division value 1/2 setting 0: do not apply 1: apply
0	RSSI_MAG_D0	0	R/W	RSSI division value 1/1 setting 0: do not apply 1: apply

(Note)

- 1. For details. Please refer to the "Energy detection value(ED value) adjustment".
- 2. Please use the value specified in the "Initialization table".
- 3. Divisor seeting can be selected one bit from bit3 to bit0. If more than one bits are set, only MSB is valid. (ie. If both bit3 and bit1 are set to 0b1, 1/8 setting is valid.)
- 4. If both multiplication and division are set, complex calculation is performed. However, if bit[3:0] = 0b0000, 1/1 will be set. (ie. If bit[7:4] = 0b0100 (x4) and bit[1=0b1] (1/2) are set, result will be x2)
- 5. If 0x00 is written to this register, x1 setting.

0x14[RSSI VAL]

Function: RSSI value indication

Address:0x14 (BANK1)

Reset value:0x00

Bit	Bit name	Reset value	R/W	Description
7:6	Reserved	00	R/W	
5:0	RSSI [5:0]	00_0000	R	RSSI AD conversion value (Note) Data update cycle is 16 µs. (Note) 16 µs is in case of ADC clock = 2.0MHz If 1.73MHz is selected, update cycle will be 18.5 µs. Please refer [ADC_CLK_SET:B1 0x08]) register.

(Note)

1. As this ADC is shared with temperature measurement, during temperature measurement, this register value is unchanged.

0x15[AFC/GC_CTRL]

Function:AFC /gain control setting Address:0x15 (BANK1)

Reset value:0x82

Bit	Bit name	Reset value	R/W	Description
7	AFC_EN	1	R/W	AFC enable setting 0: disable AFC 1: enable AFC
6	AFC_UPDATE_EN	0	R/W	AFC updating enable setting 0: disable updating 1: enable updating
5:4	UPDATE_TERM[1:0]	00	R/W	AFC updating period setting 00: 8 symbol interval 01: 16 symbol interval 10: 32 symbol interval 11: 64 symbol interval (Note) Update timing depends on data rate.
3:2	Reserved	00	R/W	
1:0	GC_MODE [1:0]	10	R/W	Gain cpmtrol mode setting 00: high gain fix 01: high gain ↔ middle gain transition enable 10: high gain ↔ middle gain ↔ low gain transition enable 11: Reserved

(Note)

1. Please use the value specified in the "Initialization table".

0x16[CRC_POLY3]

Function: CRC polynomial setting 3

Address:0x16 (BANK1)

Reset value:0x00

Bit	Bit name	Reset value	R/W	Description
7	Reserved	0	R/W	
6:0	CRC_POLY [30:24]	000_0000	R/W	CRC polynomial setting 3

[Description]

1. For details, please refer to the "CRC function".

0x17[CRC_POLY2]

Function:CRC polynomial setting 2

Address:0x17 (BANK1)

Reset value:0x00

Bit	Bit name	Reset value	R/W	Description
7:0	CRC_POLY [23:16]	0000_0000	R/W	CRC polynomial setting 2

[Description]

1. For details, please refer to the "CRC function".

0x18[CRC_POLY1]

Function:CRC polynomial setting 1

Address:0x18 (BANK1)

Reset alue:0x1E

Bit	Bit name	Reset name	R/W	Description
7:0	CRC_POLY [15:8]	0001_1110	R/W	CRC polynomial setting 1

[Description]

1. For details, please refer to the "CRC function".

0x19[CRC_POLY0]

Function:CRC polynomial setting 0

Address:0x19 (BANK1)

Reset value:0xB2

Bit	Bit name	Reset name	R/W	Description
7:0	CRC_POLY [7:0]	1011_0010	R/W	CRC polynomial setting 0

[Description]

1. For details, please refer to the "CRC function".

0x1A[Reserved]

Function:

Address:0x1A (BANK1)

Reset value:0x00

Bit	Bit name	Reset value	R/W	Description
7:0	Reserved	0000_0000	R/W	

0x1B[TXFREQ_I]

Function: TX frequency setting (I counter)

Address:0x1B (BANK1)

Reset value:0x21

Bit	Bit name	Reset value	R/W	Description
7:6	Reserved	00	R/W	
5:0	TXFREQ_I [5:0]	10_0001	R/W	TX frequency setting - I counter (Note) Reset value is 868.950MHz.

[Description]

1. For details, please refer to the "Channel #0 frequency setting"

0x1C[TXFREQ FH]

Function: TX frequency setting (F counter high 4 bit)

Address:0x1C (BANK1)

Reset value:0x06

Bit	Bit name	Reset value	R/W	Description
7:4	Reserved	00	R/W	
3:0	TXFREQ_F[19:16]	0110	R/W	TX frequency setting (F counter high 4 bits) (Note) Reset value is 868.950MHz.

[Description]

For details, please refer to the "Channel #0 frequency setting"

0x1D[TXFREQ_FM]

Function:TX frequency setting (F counter middle byte)

Address:0x1D (BANK1)

Reset value:0xBD

Bit	Bit name	Reset value	R/W	Description
7:0	TXFREQ_F[15:8]	1011_1101	R/W	TX frequency setting (F counter middle byte) (Note) Reset value is 868.950MHz.

[Description]

1. For details, please refer to the "Channel #0 frequency setting"

0x1E[TXFREQ_FL]

Function:TX frequency setting (F counter low byte)

Address:0x1E (BANK1)

Reset value:0x0B

E	Bit	Bit name	Reset value	R/W	Description
7	7:0	TXFREQ_F[7:0]	0000_1011	R/W	TX frequency setting (F counter low byte) (Note) Reset value is 868.950MHz.

[Description]

1. For details, please refer to the "Channel #0 frequency setting"

0x1F[RXFREQ_I]

Function: RX frequency setting (I counter)

Address:0x1F (BANK1)

Reset value:0x21

Bit	Bit name	Reset value	R/W	Description
7:6	Reserved	00	R/W	
5:0	RXFREQ_I[5:0]	10_0001	R/W	RX frequency counter setting (I counter) (Note) Reset value is 868.950MHz.

[Description]

1. For details, please refer to the "Channel #0 frequency setting"

0x20[RXFREQ_FH]

Function: RX frequency setting (F counter high 4bit)

Address:0x20 (BANK1)

Reset value:0x06

Bit	Bit name	Reset value	R/W	Description
7:4	Reserved	0000	R/W	
3:0	RXFREQ_F[19:16]	0110	R/W	RX frequency setting F counter (high 4 bit) (Note) Reset value is 868.950MHz.

[Description]

1. For details, please refer to the "Channel #0 frequency setting"

0x21[RXFREQ_FM]

Function: RX frequency setting (F counter middle byte)

Address:0x21 (BANK1)

Reset value:0xBD

Bit	Bit name	Reset value	R/W	Description
7:0	RXFREQ_F[15:8]	1011_1101	R/W	RX frequency setting F counter (middle byte) (Note) Reset value is 868.950MHz.

[Description]

1. For details, please refer to the "Channel #0 frequency setting"

0x22[RXFREQ_FL]

Function: RX frequency setting (F counter low byte)

Address:0x22 (BANK1)

Reset value:0x0B

Bit	Bit name	Reset value	R/W	Description
7:0	RXFREQ_F[7:0]	0000_1011	R/W	RX frequency setting F counter (low byte) (Note) Reset value is 868.950MHz.

[Description]

1. For details, please refer to the "Channel #0 frequency setting"

0x23[CH_SPACE_H]

Function: Channel space setting (high byte)

Address:0x23 (BANK1)

Reset value:0x09

Bit	Bit name	Reset value	R/W	Description
7:0	CH_SPACE[15:8]	0000_1001	R/W	Channel space setting (high byte) (Note) Reset value is 60 kHz.

[Description]

1. For details, please refer to the "Channel space setting".

0x24[CH_SPACE_L]

Function: Channel space setting (low byte)

Address:0x24 (BANK1)

Reset value:0x73

	Bit	Bit name	Reset value	R/W	Description
ĺ	7:0	CH_SPACE[7:0]	0111_0011	R/W	Channel space setting (low byte) (Note) Reset value is 60 kHz.

[Description]

1. For details, please refer to the "Channel space setting".

0x25[SYNC_WORD_LEN]

Function:SyncWord length setting

Address:0x25 (BANK1)

Reset value:0x20

Bit	Bit name	Reset value	R/W	Description
7:6	Reserved	00	R/W	
5:0	SYNC_WORD_LEN[5:0]	10_0000	R/W	SyncWord length setting (setting range:8 to 32, unit:bit) (Note) If setting is smaller than 0b00_0111, operate as 0b00_1000. (Note) If setting is larget than 0b10_0000, operate as 0b10_0000.

[Description]

1. For details, please refer to the "SyncWord detection function"

0x26[SYNC WORD EN]

Function:SyncWord enable setting

Address:0x26 (BANK1)

Reset value:0x0F

Bit	Bit name	Reset value	R/W	Description
7:4	Reserved	0000	R/W	
3	SYNC_WORD_EN3	1	R/W	SYNC_WORD[31:24] checking enable 0: disable 1: enable
2	SYNC_WORD_EN2	1	R/W	SYNC_WORD[23:16] checking enable 0: disable 1: enable
1	SYNC_WORD_EN1	1	R/W	SYNC_WORD[15:8] checking enable 0: disable 1: enable
0	SYNC_WORD_EN0	1	R/W	SYNC_WORD[7:0] checking enable 0: disable 1: enable

[Description]

1. For details, please refer to the "SyncWord detection function"

0x27[SYNCWORD1_SET0]

Function: SyncWord #1 setting (bit24 to 31)

Address:0x27 (BANK1)

Reset value:0x54

Е	3it	Bit name	Reset value	R/W	Description
	':O	SYNC WORD1[31:24]	0101 0100	R/W	SyncWord pattern #1 setting (bit24 to 31)

[Description]

1. For details, please refer to the "SyncWord detection function"

0x28[SYNCWORD1_SET1]

Function: SyncWord #1 setting (bit 16 to 23)

Address:0x28 (BANK1)

Reset value:0x3D

Bit	Bit name	Reset value	R/W	Description
7:0	SYNC_WORD1[23:16]	0011_1101	R/W	SyncWord pattern #1 setting (bit 16 to 23)

[Description]

1. For details, please refer to the "SyncWord detection function"

0x29[SYNCWORD1 SET2]

Function:SyncWord #1 setting (bit 8 to 15)

Address:0x29 (BANK1)

Reset value:0x54

Bit	Bit name	Reset value	R/W	Description
7:0	SYNC_WORD1[15:8]	0101_0100	R/W	SyncWord pattern #1 setting (bit 8 to 15)

[Description]

1. For details, please refer to the "SyncWord detection function".

0x2A[SYNCWORD1 SET3]

Function:SyncWord #1 setting (bit 0 to 7)

Address:0x2A (BANK1)

Reset value:0xCD

Bit	Bit name	Reset value	R/W	Description
7:0	SYNC_WORD1[7:0]	1100_1101	R/W	SyncWord pattern #1 setting (bit 0 to 7)

[Description]

1. For details, please refer to the "SyncWord detection function".

0x2B[SYNCWORD2_SET0]

Function: SyncWord #2 setting (bit 24 to 31)

Address:0x2B (BANK1)

Reset value:0x54

Bit	Bit name	Reset value	R/W	Description
7:0	SYNC_WORD2[31:24]	0101_0100	R/W	SyncWord pattern #2 setting (bit 24 to 31)

[Description]

1. For details, please refer to the "SyncWord detection function".

0x2C[SYNCWORD2 SET1]

Function: SyncWord #2 setting (bit 16 to 23)

Address:0x2C (BANK1)

Reset value:0x3D

Γ	Bit	Bit name	Reset value	R/W	Description
Ī	7:0	SYNC WORD2[23:16]	0011 1101	R/W	SyncWord pattern #2 setting (bit 16 to 23)

[Description]

1. For details, please refer to the "SyncWord detection function".

0x2D[SYNCWORD2_SET2]

Function:SyncWord pattern setting 2 (bit 8 to 15)

Address:0x2D (BANK1)

Reset value:0x54

Bit	Bit name	Reset value	R/W	Description
7:0	SYNC_WORD2[15:8]	0101_0100	R/W	SyncWord pattern #2 setting (bit 8 to 15)

[Description]

1. For details, please refer to the "SyncWord detection function".

0x2E[SYNCWORD2_SET3]

Function: SyncWord #2 setting (bit 0 to 7)

Address:0x2E (BANK1)

Reset value:0x3D

Bit	Bit name	Reset value	R/W	Description
7:0	SYNC_WORD2[7:0]	0011_1101	R/W	SyncWord pattern #2 setting (bit 0 to 7)

[Description]

1. For details, please refer to the "SyncWord detection function".

0x2F[FSK_CTRL]

Function: GFSK/FSK modulation timing resolution setting

Address:0x2F (BANK1)

Reset value:0x00

Bit	Bit name	Reset value	R/W	Description
7:1	Reserved	00_0000	R/W	
0	FSK_CLK_SET	0	R/W	GFSK/FSK modulation timing resolution setting 0: 4.33MHz resolution 1: 13MHz resolution (Note) If bit rate is lower than 300kbps, please set 0b0. If bit rate is higher than 300kbps, please set 0b1.

[Description]

1. For details, please refer to the "Modulation setting".

0x30[GFSK DEV H]

Function: GFSK frequency deviation setting (high 6 bits)

Address:0x30 (BANK1)

Reset value:0x07

Bit	Bit name	Reset value	R/W	Description
7:6	Reserved	00	R/W	
5:0	GFSK_DEV[13:8]	00_0111	R/W	GFSK frequency deviation setting (high 6 bits) (Note) combined toghether with [GFSK_DEV_L: B1 0x31] register. (Note) Reset value is 45kHz.

[Description]

1. For details, please refer to the "Modulation setting".

0x31[GFSK DEV L]

Function: GFSK frequency deviation setting (low byte)

Address: 0x31 (BANK1)

Reset value:0x16

Bit	Bit name	Reset value	R/W	Description
7:0	GFSK_DEV[7:0]	0001_0110	R/W	GFSK frequency deviation setting (low byte) (Note) combined toghether with [GFSK_DEV_H: B1 0x30] register. (Note) Reset value is 45kHz.

[Description]

1. For details, please refer to "Modulation setting".

0x32[FSK DEV0 H/GFIL0]

Function: FSK 1st frequency deviation setting (high byte) / Gaussian filter coefficient setting 0

Address: 0x32 (BANK1)

Reset value:0x07

Bit	Bit name	Reset value	R/W	Description
7:6	GFIL0[7:6]	00	R/W	Gaussian filter coefficient setting 0 (Note) Gaussian filter coefficient bit range is bit7-0.
5:0	FSK_DEV0[13:8]/ GFIL0[5:0]	00_0111	R/W	FSK 1 st frequency deviation setting (high 6 bits)/ Gaussian filter coefficient setting 0 (Note) FSK 1 st frequency can be set comboned with [FSK_DEV0_L/GFIL1: B1 0x33] register. Reset value is 45kHz.

[Description]

- 1. For details, please refer to the "Modulation setting".
- 2. Gaussian filter coefficient and FSK frequency deviation setting functions are shared in this register.

0x33[FSK DEV0 L/GFIL1]

Function: FSK 1st frequency deviation setting (low byte) / Gaussian filter coefficient setting 1

Address: 0x33 (BANK1)

Reset value:0x16

Bit	Bit name	Reset value	R/W	Description
7:0	FSK_DEV0[7:0]/ GFIL1[7:0]	0001_0110	R/W	FSK 1 st frequency deviation setting (low byte)/ Gaussian filter coefficient setting 1 (Note) FSK 1 st frequency can be set comboned with [FSK_DEV0_H/GFIL0: B1 0x32] register. Reset value is 45kHz.

[Description]

- 1. For details, please refer to the "Modulation setting".
- 2. Gaussian filter coefficient and FSK frequency deviation setting functions are shared in this register.

0x34[FSK_DEV1_H/GFIL2]

Function: : FSK 2nd frequency deviation setting (high byte) / Gaussian filter coefficient setting 2

Address: 0x34 (BANK1)

Reset value:0x07

Bit	Bit name	Reset value	R/W	Description
7:6	Reserved	00	R/W	
5:0	FSK_DEV1[13:8]/ GFIL2[4:0]	00_0111	R/W	FSK 2 nd frequency deviation setting (high byte)/ Gaussian filter coefficient setting 2 (Note) FSK 2 nd frequency can be set comboned with [FSK_DEV1_L/GFIL3: B1 0x35] register. Reset value is 45kHz.

[Description]

- 1. For details, please refer to the "Modulation setting".
- 2. Gaussian filter coefficient and FSK frequency deviation setting functions are shared in this register.

0x35[FSK DEV1 L/GFIL3]

Function: FSK 2nd frequency deviation setting (low byte) / Gaussian filter coefficient setting 3

Address: 0x35 (BANK1)

Reset value:0x16

Bit	Bit name	Reset value	R/W	Description
7:0	FSK_DEV1[7:0]/ GFIL3[5:0]	0001_0110	R/W	FSK 2 nd frequency deviation setting (low byte)/ Gaussian filter coefficient setting 3 (Note) FSK 2 nd frequency can be set comboned with [FSK_DEV1_H/GFIL2: B1 0x34] register. Reset value is 45kHz.

[Description]

1. For details, please refer to the "Modulation setting".

2. Gaussian filter coefficient and FSK frequency deviation setting functions are shared in this register.

0x36[FSK DEV2 H/GFIL4]

Function: FSK 3rd frequency deviation setting (high byte) / Gaussian filter coefficient setting 4

Address: 0x36 (BANK1)

Reset value:0x07

Bit	Bit name	Reset value	R/W	Description
7:6	Reserved	00	R/W	
5:0	FSK_DEV2[13:8]/ GFIL4[5:0]	00_0111	R/W	FSK 3 rd frequency deviation setting (high byte)/ Gaussian filter coefficient setting 4 (Note) FSK 3 rd frequency can be set comboned with [FSK_DEV2_L/GFIL5: B1 0x37] register.Reset value is 45kHz.

[Description]

1. For details, please refer to the "Modulation setting".

2. Gaussian filter coefficient and FSK frequency deviation setting functions are shared in this register.

0x37[FSK DEV2 L/GFIL5]

Function: FSK 3rd frequency deviation setting (low byte) / Gaussian filter coefficient setting 5

Address: 0x37 (BANK1)

Reset value:0x16

Bit	Bit name	Reset value	R/W	Description
7:0	FSK_DEV2[7:0]/ GFIL5[6:0]	0001_0110	R/W	FSK 3 rd frequency deviation setting (low byte)/ Gaussian filter coefficient setting 5 (Note) FSK 3 rd frequency can be set comboned with [FSK_DEV2_H/GFIL4: B1 0x36] register. Reset value is 45kHz.

[Description]

1. For details, please refer to the "Modulation setting".

2. Gaussian filter coefficient and FSK frequency deviation setting functions are shared in this register.

0x38[FSK_DEV3_H/GFIL6]

Function: FSK 4th frequency deviation setting (high byte) / Gaussian filter coefficient setting 6

Address: 0x38 (BANK1)

Bit	Bit name	Reset value	R/W	Description
7	Reserved	0	R/W	
6	GFIL6[6]	0	R/W	Gaussian filter coefficient setting 6 (Note) Gaussian filter coefficient bit range is bit6-0.
5:0	FSK_DEV3[13:8]/ GFIL6[5:0]	00_0111	R/W	FSK 4 th frequency deviation setting (high byte) / Gaussian filter coefficient setting 6 (Note) FSK 4 th frequency can be set comboned with [FSK_DEV3_L: B1 0x39] register.Reset value is 45kHz.

[Description]

1. For details, please refer to the "Modulation setting".

2. Gaussian filter coefficient and FSK frequency deviation setting functions are shared in this register.

0x39[FSK_DEV3_L]

Function: FSK 4th frequency deviation setting (low byte)

Address: 0x39 (BANK1)

Reset value:0x16

Bit	Bit name	Reset value	R/W	Description
7:0	FSK_DEV3[7:0]	0001_0110	R/W	FSK 4 th frequency deviation setting (low byte) (Note) FSK 4 th frequency can be set comboned with [FSK_DEV3_H/GFIL6: B1 0x36] register. Reset value is 45kHz.

[Description]

1. For details, please refer to "Modulation setting".

0x3A[FSK DEV4 H]

Function: FSK 5th frequency deviation setting (high byte)

Address: 0x3A (BANK1)

Reset value:0x07

Bit	Bit name	Reset value	R/W	Description
7:6	Reserved	00	R/W	
5:0	FSK_DEV4[13:8]	00_0111	R/W	FSK 5 th frequency deviation setting (high byte) (Note) FSK 5 th frequency can be set comboned with [FSK_DEV4_L: B1 0x3B] register.Reset value is 45kHz.

[Description]

1. For details, please refer to "Modulation setting".

0x3B[FSK DEV4 L]

Function: FSK 5th frequency deviation setting (low byte)

Address: 0x3B (BANK1)

Reset value:0x16

	Bit	Bit name	Reset value	R/W	Description
Ī	7:0	FSK_DEV4[7:0]	0001_0110	R/W	FSK 5 th frequency deviation setting (low byte) (Note) FSK 5 th frequency can be set comboned with [FSK_DEV4_H: B1 0x3A] register. Reset value is 45kHz.

[Description]

1. For details, please refer to "Modulation setting".

0x3C[FSK_TIM_ADJ4]

Function: FSK 4th frequency deviation hold timing setting

Address: 0x3C (BANK1)

Reset value:0x04

Bit	Bit name	Reset value	R/W	Description
7	Reserved	0	R/W	
6:0	FSK_TIM_ADJ4 [6:0]	000_0100	R/W	FSK 4 th frequency deviation hold timing

[Description]

1. For details, please refer to the "Modulation setting".

0x3D[FSK_TIM_ADJ3]

Function: FSK 3rd frequency deviation hold timing setting

Address: 0x3D (BANK1)

Reset value:0x04

Bit	Bit name	Reset value	R/W	Description
7	Reserved	0	R/W	
6:0	FSK_TIM_ADJ3[6:0]	000_0100	R/W	FSK 3 rd frequency deviation hold timing

[Description]

1. For details, please refer to the "Modulation setting".

0x3E[FSK_TIM_ADJ2]

Function: FSK 2nd frequency deviation hold timing setting

Address: 0x3E (BANK1)

Reset value:0x04

Bit	Bit name	Reset value	R/W	Description
7	Reserved	0	R/W	
6:0	FSK_TIM_ADJ2[6:0]	000_0100	R/W	FSK 2 nd frequency deviation hold timing

[Description]

1. For details, please refer to the "Modulation setting".

0x3F[FSK_TIM_ADJ1]

Function: FSK 1st frequency deviation hold timing setting

Address: 0x3F (BANK1)

Reset value:0x04

Bit	Bit name	Reset value	R/W	Description
7	Reserved	0	R/W	
6:0	FSK_TIM_ADJ[6:0]	000_0100	R/W	FSK 1 st frequency deviation hold timing

[Description]

1. For details, please refer to the "Modulation setting".

0x40[FSK TIM ADJ0]

Function: FSK no-deviation frequency (carrier frequency) hold timing setting

Address: 0x40 (BANK1)

Reset value:0x04

Bit	Bit name	Reset value	R/W	Description
7	Reserved	0	R/W	
6:0	FSK_TIM_ADJ[6:0]	000_0100	R/W	FSK no-diviation frequency hold timing

[Description]

1. For details, please refer to the "Modulation setting".

0x41-0x47[Reserved]

Function: reservation

Address: 0x41-0x47 (BANK1)

Bit	Bit name	Reset value	R/W	Description
7:0	Reserved	0000_0000	R/W	

0x48[2DIV_MODE]

Function: Average diversity mode setting

Address: 0x48 (BANK1)

Reset value:0x01

Bit	Bit name	Reset value	R/W	Description
7:5	Reserved	000	R/W	
4	SEARCH_MODE	0	R/W	Antenna diversity mode setting 0: disable Antenna diversity FAST mode 1: enable Antenna diversity FAST mode
3	Reserved	0	R/W	
2:0	2DIV_ED_AVG [2:0]	001	R/W	Average number of ED calculation during Antenna diversity 000: average 1 time 001: average 2 times 010: average 4 times 011: average 8 times 100: average 16 times 101: average 32 times Other than above: 16 times

[Description]

1. For details, please refer to the "diversity function".

0x49[2DIV_SEARCH1]

Function: Antenna diversity search time setting

Address: 0x49 (BANK1)

Reset value:0x0E

Bit	Bit name	Reset value	R/W	Description
7	SEARCH_TIME_SET	0	R/W	Antenna diversity search time resolution setting 0: 16µs 1: 256µs (Note) apply to both SEARCH_TIME1[6:0] and SEARCH_TIME22[6:0] ([2DIV_SEARCH2:B1 0x4A(6-0)]).
6:0	SEARCH_TIME1[6:0]	000_1110	R/W	Antenna diversity search time setting 1

[Description]

1. For details, please refer to the "diversity function".

0x4A[2DIV_SEARCH2]

Function: Antenna diversity search time setting

Address: 0x4A (BANK1)

Reset value:0x0E

Bit	Bit name	Reset value	R/W	Description
7	Reserved	0	R/W	
6:0	SEARCH_TIME2[6:0]	000_1110	R/W	Antenna diversity search time setting 2

[Description]

1. For details, please refer to the "diversity function".

0x4B[2DIV_FAST_LVL]

Function: ED threshold value setting during Antenna diversity FAST mode

Address: 0x4B (BANK1)

Reset value:0x00

Bit	Bit name	Reset value	R/W	Description
7:0	2DIV_FAST_LVL[7:0]	0000_0000	R/W	Antenna diversity FAST mode ED threshold value setting

0x4C[Reserved]

Function:

Address: 0x4C (BANK1)

Reset value:0x06

Bit	Bit name	Reset value	R/W	Description
7:0	Reserved	0000_0110	R/W	

0x4D[VCO CAL MIN I]

Function: VCO calibration low limit frequency setting (I counter)

Address: 0x4D (BANK1)

Reset value:0x21

Bit	Bit name	Reset value	R/W	Description
7:6	Reserved	00	R/W	
5:0	VCO_CAL_MIN_I[5:0]	10_0001	R/W	VCO calibration low limit frequency setting - I counter

[Description]

- 1. For details information of VCO calibration usage, please refer to "VCO adjustment"
- 2. For frequency setting method, please refer to "VCO low limit frequency setting"

(Note)

1. For low limit frequency, please set the frequency 2.2MHz lower than frequency used.

0x4E[VCO_CAL_MIN_FH]

Function: VCO calibration low limit frequency setting (F counter high 4 bits)

Address: 0x4E (BANK1)

Reset value:0x04

Bit	Bit name	Reset value	R/W	Description
7:4	Reserved	0000	R/W	
3:0	VCO CAL MIN F[19:16]	0100	R/W	VCO calibration low limit frequency setting - F counter high 4 bit

[Description]

- 1. For details information of VCO calibration usage, please refer to the "VCO adjustment"
- 2. For frequency setting method, please refer to the "VCO low limit frequency setting"

(Note)

1. For low limit frequency, please set the frequency 2.2MHz lower than frequency used.

0x4F[VCO CAL MIN FM]

Function: VCO calibration low limit frequency setting (F counter middle byte)

Address: 0x4F (BANK1) Reset value:0xEC

Bit	Bit name	Reset value	R/W	Description
7:0	VCO_CAL_MIN_F[15:8]	1110_1100	R/W	VCO calibration low limit frequency setting - F counter middle byte

[Description]

- 1. For details information of VCO calibration usage, please refer to the "VCO adjustment"
- 2. For frequency setting method, please refer to the "VCO low limit frequency setting"

(Note)

1. For low limit frequency, please set the frequency 2.2MHz lower than frequency used.

0x50[VCO CAL MIN FL]

Function: VCO calibration low limit frequency setting (F counter low byte)

Address: 0x50 (BANK1) Reset value:0x4E

Bit	Bit name	Reset value	R/W	Description
7:0	VCO_CAL_MIN_F[7:0]	0100_1110	R/W	VCO calibration low limit frequency setting - F counter low byte)

[Description]

- 1. For details information of VCO calibration usage, please refer to the "VCO adjustment"
- 2. For frequency setting method, please refer to the "VCO low limit frequency setting"

(Note)

1. For low limit frequency, please set the frequency 2.2MHz lower than frequency used.

0x51[VCO CAL MAX N]

Function: VCO calibration upper limit frequency setting

Address: 0x51 (BANK1) Reset value:0x04

Bit	Bit name	Reset value	R/W	Description	
7:4	Reserved	0000	R/W		
3:0	VCO_CAL_MAX_N[3:0]	0100	R/W	VCO calibration upper frequency limit range setting (ΔF from low limit frequency) 0000: 0MHz 0001: 0.8125MHz 0010: 1.625MHz 0010: 3.25MHz 0011: 3.25MHz 0100: 6.5 MHz 0101: 13 MHz 0110: 26 MHz 0110: 26 MHz 0110: 26 MHz 0110: 52MHz 1000: 82.875MHz 1001: 104MHz 0011: 104MHz 0011: 104MHz 0011: 104MHz 0011: 104MHz	

[Description]

- 1. For details information of VCO calibration usage, please refer to the "VCO adjustment"
- 2. For frequency setting method, please refer to the "VCO upper limit frequency setting"

(Note)

1. For upper limit frequency, please set the frequency range that includes the frequency used.

0x52[VCAL_MIN]

Function: VCO calibration low limit value indication and setting

Address: 0x52 (BANK1)

Reset value:0x40

Bit	Bit name	Reset value	R/W	Description
7	Reserved	0	R/W	
6:0	VCAL_MIN[6:0]	100_0000	R/W	VCO calibration low limit value (Note) after calibration by [VCO_CAL_START: B0 0x6F], value will be saved automatically.

[Description]

1. For details usage of VCO calibration, please refer to the "VCO adjustment"

0x53[VCAL_MAX]

Function: VCO calibration upper limit value indication and setting

Address: 0x53 (BANK1)

Reset value:0x40

Bit	Bit name	Reset value	R/W	Description
7	Reserved	0	R/W	
6:0	VCAL_MAX[6:0]	100_0000	R/W	VCO calibration upper limit value (Note) after calibration by [VCO_CAL_START: B0 0x6F], value will be saved automatically.

[Description]

1. For details usage of VCO calibration, please refer to the "VCO adjustment"

0x54-0x55[Reserved]

Function:

Address: 0x54-0x55 (BANK1)

Reset value:0x06

Bit	Bit name	Reset value	R/W	Description
7:0	Reserved	0000_0000	R/W	

0x56[DEMOD_SET0]

Function: demodulator configulation 0

Address: 0x56 (BANK1)

Bit	Bit name	Reset value	R/W	Description
7:5	Reserved	000	R/W	
4	STR_LIM_ON	0	R/W	Symbol timing recovery limiter setting 0: turn off limiter 1: turn on limiter
3	STR_HOLD_ON	0	R/W	Symbol timing recovery setting 0: constantly tacking symbol timing 1: after SyncWord detection, keeping symbol timing
2	AFC_LIM_OFF	0	R/W	AFC limiter setting 0: turn on AFC limiter 1: turn off AFC limiter
1	AFC_HOLD_ON	0	R/W	AFC mode setting 0: constantly performing AFC 1: After SyncWord detection, keeping AFC.
0	AFC_OFF_EN	0	R/W	AFC OFF enable setting 0: disable (performing AFC) 1: enable (not performinf AFC)

(Note)

1. Please use the value specified in the "Initialization table".

0x57[DEMOD_SET1]

Function: Demodulator configulation 1

Address: 0x57 (BANK1)

Reset value:0x14

Bit	Bit name	Reset value	R/W	Description
7:6	Reserved	00	R/W	
5:4	IFEDGE_SEL[1:0]	01	R/W	IF edge width setting 00: 1 cycle width 01: 2 cycle width 10: 3 cycle width 11: 4 cycle width
3:0	DEMOD_DIV[3:0]	0100	R/W	Modulation divisor setting 0000: no division 0001: no division Other setting : divisor value setting (default 1/4)

(Note)

1. Please use the value specified in the "Initialization table".

0x58[DEMOD_SET2]

Function: Demodulator configulation 2

Address: 0x58 (BANK1)

Reset value:0x28

Bit	Bit name	Reset value	R/W	Description
7	Reserved	0	R/W	
6:0	FDET_LPF1_SUB[6:0]	010_1000	R/W	Demodulator LPF1 zero adjustment

(Note)

1. Please use the value specified in the "Initialization table".

0x59[DEMOD_SET3]

Function: Demodulator configulation 3

Address: 0x59 (BANK1)

Reset value:0x0C

Bit	Bit name	Reset value	R/W	Description
7:5	FDET_LPF3_SUB[2:0]	000	R/W	Demodulator LPF3 zero adjustment
4:0	FDET_LPF2_SUB[4:0]	0_1100	R/W	Demodulator LPF2 zero adjustment

(Note)

1. Please use the value specified in the "Initialization table".

0x5A[DEMOD_SET4]

Function: Demodulator configulation 4

Address: 0x5A (BANK1)

Reset value:0x24

Bit	Bit name	Reset value	R/W	Description
7:4	LPF2_SEL[3:0]	0010	R/W	Demodulator LPF2 cut-off frequency setting
3:0	LPF1_SEL[3:0]	0100	R/W	Demodulator LPF1 cut-off frequency setting

(Note)

1. Please use the value specified in the "Initialization table".

0x5B[DEMOD_SET5]

Function: Demodulator configulation 5

Address: 0x5B (BANK1) Reset value:0x7A

Bit	Bit name	Reset value	R/W	Description
7:6	LPF3_GAIN[1:0]	01	R/W	Demodulator LPF3 gain setting
5:3	LPF2_GAIN[2:0]	111	R/W	Demodulator LPF2 gain setting
2:0	LPF3_SEL[2:0]	010	R/W	Demodulator LPF3 cut-off frequency setting

(Note)

1. Please use the value specified in the "Initialization table".

0x5C[DEMOD_SET6]

Function: Demodulator configulation 6

Address: 0x5C (BANK1) Reset value:0x27

Bit	Bit name	Reset value	R/W	Description
7:0	RXDEV_RANGE[7:0]	0010_0111	R/W	RX frequency deviation range setting

(Note)

1. Please use the value specified in the "Initialization table".

0x5D[DEMOD_SET7]

Function: Demodulator configulation 7

Address: 0x5D (BANK1)

Reset value:0x5F

Bit	Bit name	Reset value	R/W	Description
7:0	AFC_LIM[7:0]	0101_1111	R/W	AFC tacking range setting

(Note)

1. Please use the value specified in the "Initialization table".

0x5E[DEMOD_SET8]

Function: Demodulator configulation 8

Address: 0x5E (BANK1)

Reset value:0x03

Bit	Bit name	Reset value	R/W	Description
7:6	LPF1_ADJ[1:0]	00	R/W	Demodulator LPF1 adjustment
5	LPF2_CLK_SEL	0	R/W	Demodulator LPF2 clock setting 0: using over 15 kbps 1: using less than or equal 15 kbps
4:3	Reserved	00	R/W	
2:0	PLL_AFC_SHIFT[2:0]	011	R/W	PLL-AFC magnification adjustment 1

(Note)

1. Please use the value specified in the "Initialization table".

0x5F[DEMOD_SET9]

Function: Demodulator configulation 9

Address: 0x5F (BANK1)

Reset value:0x90

Bit	Bit name	Reset value	R/W	Description
7:0	PLL_AFC_CO[7:0]	1001_0000	R/W	PLL-AFC magnification adjustment 2

(Note)

1. Please use the value specified in the "Initialization table".

0x60[DEMOD_SET10]

Function: Demodulator configulation 10

Address: 0x60 (BANK1)

Reset value:0x10

Bit	Bit name	Reset value	R/W	Description
7:5	Reserved	000	R/W	
4:0	STR_PB_LEN[4:0]	1_0000	R/W	Demodulator preamble detection threshold value setting

(Note)

1. Please use the value specified in the "Initialization table".

0x61[DEMOD_SET11]

Function: Demodulator configulation 11

Address: 0x61 (BANK1)

Reset value:0x08

Bit	Bit name	Reset value	R/W	Description
7:5	Reserved	000	R/W	
4:0	STR PB LEN DIV[4:0]	0 1000	R/W	Demodulator preamble detection threshold value setting (during diversity)

(Note)

1. Please use the value specified in the "Initialization table".

0x62[ADDR_CHK_CTR_H]

Function: Address check counter indication (high 3 bit)

Address: 0x62 (BANK1)

Reset value:0x00

Bit	Bit name	Reset value	R/W	Description
7:3	Reserved	0000_0	R/W	
2:0	ADDR_CHK_CTR[10:8]	000	R	Indicating the number of packets mismatch during Field checking (high 3 bits) (Note) combined toghether with [TX_RATE_L: B1 0x63] register. (Note) Max. count is 2047. Count value can be cleared by STATE_CLR4([STATE_CLR: B0 0x16(4)]).

[Description]

1. For details, please refer to "Field checking function".

0x63[ADDR_CHK_CTR_L]

Function: Address check counter indication (low byte)

Address: 0x63 (BANK1)

Reset value:0x00

Bit	Bit name	Reset value	R/W	Description
7:0	ADDR_CHK_CTR[7:0]	0000_0000	R	Indicating the number of packets mismatch during Field checking (low byte) For details, please refer to "[ADDR_CHK_CTR_H:B1 0x62]" register.

[Description]

1. For details, please refer to the "Field checking function".

0x64[WHT_INIT_H]

Function: Whiteing initialized state setting (high 1 bit)

Address: 0x64 (BANK1)

Reset value:0x01

Bit	Bit name	Reset value	R/W	Description
7:1	Reserved	000_0000	R/W	
0	WHT_INIT[8]	1	R/W	Whiteing initialized state setting (high 1 bit)

[Description]

1. For details, please refer to the "DataWhitening function".

0x65[WHT_INIT_L]

Function: Whiteing initialized state setting (low byte)

Address: 0x65 (BANK1) Reset value:0xFF

_					
	Bit	Bit name	Reset value	R/W	Description
Ī	7:0	WHT INIT[7:0]	1111 1111	R/W	Whiteing initialized state setting (low byte)

[Description]

1. For details, please refer to the "DataWhitening function".

0x66[WHT CFG]

Function: Whiteing polynomial setting

Address: 0x66 (BANK1)

Reset value:0x08

Bit	Bit name	Reset value	R/W	Description
7:0	WHT_CFG[7:0]	0000_1000	R/W	Whiteing polynomial setting

[Description]

1. For details, please refer to "DataWhitening function".

0x67-0x7E[Reserved]

Function: Reserved

Address: 0x67-0x7E (BANK1)

Bit	Bit name	Reset value	R/W	Description
7:0	Reserved	0000 0000	R/W	

LAPIS Semiconductor Co., Ltd.

0x7F[ID_CODE]

Function: ID code indication Address: 0x7F (BANK1) Reset value:0x81

Bit	Bit name	Reset value	R/W	Description
7:0	ID[7:0]	1000 0001	R/W	ID code

•Register Bank2

0x00[BANK_SEL]

Function: Register access bank selection

Address:0x00 (BANK2)

Reset value:0x11

Bit	Bit name	Reset value	R/W	description
7	B3_ACEN	0	R/W	BANK3 register access enable 0: access disable 1: access enable
6	B2_ACEN	0	R/W	BANK2 register access enable 0: access disable 1: access enable
5	B1_ACEN	0	R/W	BANK1 register access enable 0: access disable 1: access enable
4	B0_ACEN	1	R/W	BANK0 register access enable 0: access disable 1: access enable
3-0	BANK[3:0]	0001	R/W	BANK selection 0001: BANK0 access 0010: BANK1 access 0100: BANK2 access 1000: BANK3 access Other setting: prohibit

(Note)

- 1. During VCOcalibration operation, do not access BANK1 registers.
- 2. Register acess can be done by CLK_INIT_DONE([CLK_SET1: B0 0x02(7)])=0b0. But the registers related to RF status has to be accessed after CLK_INIT_DONE=0b1.

0x7E[CCA_MASK_SET]

Function:Filter stabilization time setting during CCA

Address:0x7E (BANK2)

Bit	Bit name	Reset value	R/W	description
7:5	Reserved	000	R/W	
4	CCA_MASK_EN	0	R/W	Filter stabilization time setting during CCA 0: disable stabilization time 1: enable stabilization time (Note) please refer to the "CCA function" for detail.
3:0	Reserved	0010	R/W	

•Register Bank3

0x00[BANK_SEL]

Function: Register access bank selection

Address:0x00 (BANK3)

Reset value:0x11

Bit	Bit name	Reset value	R/W	description	
7	B3_ACEN	0	R/W	BANK3 register access enable R/W 0: access disable 1: access enable	
6	B2_ACEN	0	BANK2 register access enable R/W 0: access disable 1: access enable		
5	B1_ACEN	0	R/W	BANK1 register access enable 0: access disable 1: access enable	
4	B0_ACEN	1	R/W	BANK0 register access enable 0: access disable 1: access enable	
3-0	BANK[3:0]	0001	R/W	BANK selection 0001: BANK0 access 0010: BANK1 access 0100: BANK2 access 1000: BANK3 access Other setting: prohibit	

(Note)

- 1. During VCOcalibration operation, do not access BANK1 registers.
- 2. Register acess can be done by CLK_INIT_DONE([CLK_SET1: B0 0x02(7)])=0b0.

 But the registers related to RF status has to be accessed after CLK_INIT_DONE=0b1.

0x23[2MODE_DET]

Function:2 modes detection setting (MODE-T and MODE-C)

Address:0x23 (BANK3)

Bit	Bit name	Reset value	R/W	description
7:1	Reserved	0000_000	R/W	
0	2MODE_DET_EN	0	R/W	Receiving mode setting 0: receiving Mode-C only 1: receiveing both Mode-T and Mode –C (Note) mode chang is inhibited in the RX_ON state. Please change in the TRX_OFF state.

■Application circuits example

The below diagram does not show decoupling capacitors for LSI power pins. 10uF decoupling capacitor should be placed to common 3.3V power pins . MURATA LQW15series inductors are recommended.

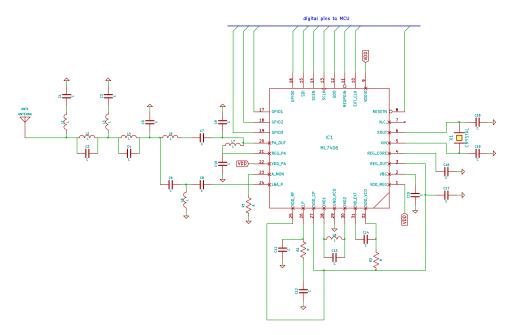


Figure.Direct-Tie exmaple

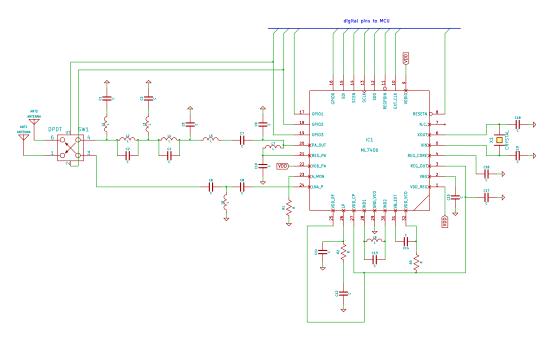
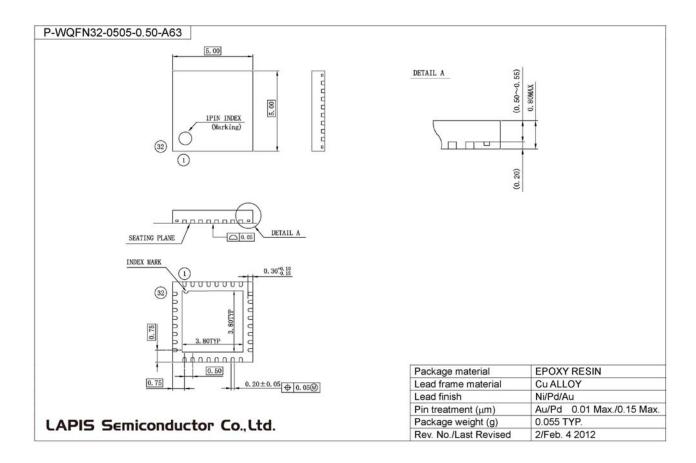



Figure. Diversity exmaple

■Package Dimensions

Remarks for surface mount type package

Surface mount type package is very sensitive affected by heating from reflow process, humidity during storaging Therefore, in case of reflow mouting process, please contact sales representative about product name, package name, number of pin, package code and required reflow process condition (reflow method, temperature, number of reflow process), storage condition.

■Footprint Pattern (Recommendation)

When laying out PC boards, it is important to design the foot pattern so as to give consideration to ease of mounting, bonding, positioning of parts, reliability, wiring, and elimination of slder bridges.

The optimum design for the foot pattern varies with the materials of the substrate, the sort and thickness of used soldering paste, and the way of soldering. Therefore when laying out the foot pattern on the PC boards, refer to this figure which mean the mounting area that the package leads are allowable for soldering PC boards.

P-WQFN32-0505-0.50-A63

5.0

[単位/Unit:mm]

■Revision History

		pa	ge	Revision description
Document No.	Release date	Before revision	After revision	
PEDL7406-01	Sep 14, 2012	-	-	Preliminary version
FEDL7406-01	June 12, 2013	-	-	Initial release
FEDL7406-02	July 9, 2013	14	14	Correct 100kbps minimum RX sensitivity
		16	16	Correct figure of DIO interface characteristics. Initial level of DCLK is modified from L to H.
		93	93	Add description for initialization table
		157	157	Correct note in TXFIFO_THRL[5:0]([TXFIFO_THRL: B0 0x18(5-0)].
		163	163	Correct note in WAKEUP_MODE([SLEEP/WU_SET: B0 0x2D(6)].
		164	164	Add note in WUDT_CLK_SET[3:0]([WUT_CLK_SET: B0 0x2E(7-4)].
		219	219	Add RF switch unused example in application circuits example

(Note) Corrections in spelling, improvements in the description are not included in the Revision history.

NOTES

No copying or reproduction of this document, in part or in whole, is permitted without the consent of LAPIS Semiconductor Co., Ltd.

The content specified herein is subject to change for improvement without notice.

Examples of application circuits, circuit constants and any other information contained herein illustrate the standard usage and operations of the Products. The peripheral conditions must be taken into account when designing circuits for mass production.

Great care was taken in ensuring the accuracy of the information specified in this document. However, should you incur any damage arising from any inaccuracy or misprint of such information, LAPIS Semiconductor shall bear no responsibility for such damage.

The technical information specified herein is intended only to show the typical functions of and examples of application circuits for the Products. LAPIS Semiconductor does not grant you, explicitly or implicitly, any license to use or exercise intellectual property or other rights held by LAPIS Semiconductor and other parties. LAPIS Semiconductor shall bear no responsibility whatsoever for any dispute arising from the use of such technical information.

The Products specified in this document are intended to be used with general-use electronic equipment or devices (such as audio visual equipment, office-automation equipment, communication devices, electronic appliances and amusement devices).

The Products specified in this document are not designed to be radiation tolerant.

While LAPIS Semiconductor always makes efforts to enhance the quality and reliability of its Products, a Product may fail or malfunction for a variety of reasons.

Please be sure to implement in your equipment using the Products safety measures to guard against the possibility of physical injury, fire or any other damage caused in the event of the failure of any Product, such as derating, redundancy, fire control and fail-safe designs. LAPIS Semiconductor shall bear no responsibility whatsoever for your use of any Product outside of the prescribed scope or not in accordance with the instruction manual.

The Products are not designed or manufactured to be used with any equipment, device or system which requires an extremely high level of reliability the failure or malfunction of which may result in a direct threat to human life or create a risk of human injury (such as a medical instrument, transportation equipment, aerospace machinery, nuclear-reactor controller, fuel-controller or other safety device). LAPIS Semiconductor shall bear no responsibility in any way for use of any of the Products for the above special purposes. If a Product is intended to be used for any such special purpose, please contact a ROHM sales representative before purchasing.

If you intend to export or ship overseas any Product or technology specified herein that may be controlled under the Foreign Exchange and the Foreign Trade Law, you will be required to obtain a license or permit under the Law.

Copyright 2012-2013 LAPIS Semiconductor Co., Ltd.