International **ISR** Rectifier

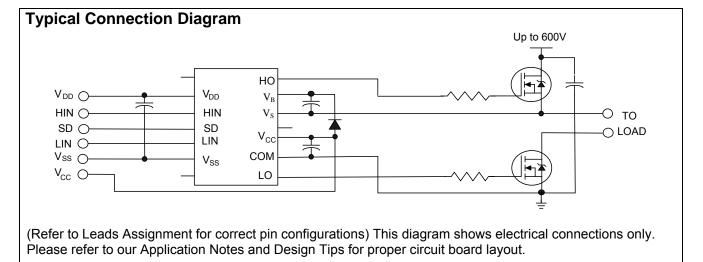
March 24, 2010 IRS2113MPBF HIGH- AND LOW-SIDE DRIVER

Features

- Floating channel designed for bootstrap operation
- Fully operational to +600 V
- Tolerant to negative transient voltage dV/dt immune
- Gate drive supply range from 10 V to 20 V
- Undervoltage lockout for both channels
- 3.3 V input logic compatible
- Separate logic supply range from 3.3 V to 20 V
- Logic and power ground ±5 V offset
- CMOS Schmitt-triggered inputs with pull-down
- Cycle by cycle edge-triggered shutdown logic
- Matched propagation delay for both channels
- Output in phase with inputs
- Leadfree, RoHS Compliant

Description

The IRS2113MPBF is a high voltage, high speed power MOSFET and IGBT drivers with independent high and low side referenced output channels. Proprietary HVIC and latch immune CMOS technologies enable ruggedized monolithic construction. The logic input is compatible with standard CMOS or LSTTL output, down to 3.3 V logic. The output drivers feature a high pulse current buffer stage designed for minimum driver cross-conduction. Propagation delays are matched to simplify use in high frequency applications. The floating channel can be used to drive an N-channel power MOSFET or IGBT in the high side configuration which operates up to 600 V.


Product Summary

Topology	2 channels
V _{OFFSET}	600 V max
V _{OUT}	10 V – 20 V
l₀₊ & l ₀₋ (typical)	2.5 A / 2.5 A
t _{on} & t _{off} (typical)	130 ns & 120 ns
Delay Matching	20 ns max

Package Option

MLPQ4x4-16-Lead (without 2 leads)

Qualification Information[†]

		Industrial ^{††} (per JEDEC JESD 47)				
Qualification Level		Comments: This IC has passed JEDEC's Industrial				
			nsumer qualification level is			
		granted by extension o	f the higher Industrial level.			
			MSL2 ^{†††}			
Moisture Sensitivity I	Moisture Sensitivity Level		(per IPC/JEDEC J-STD-			
			020)			
	Machine Model		Class A (+/-200V)			
		(per JEDEC standard JESD22-A115)				
ESD	Human Rady Madal	Class 1B (+/-1000V)				
230	Human Body Model	(per EIA/JEDEC standard EIA/JESD22-A114)				
	Charged Device Medel	Class III (+/-1000V)				
Charged Device Model		(per JEDEC standard JESD22-C101)				
IO Lotak Un Toot		Class II, Level A				
IC Latch-Up Test		(per JESD78A)				
RoHS Compliant		Yes				

† Qualification standards can be found at International Rectifier's web site <u>http://www.irf.com/</u>

++ Higher qualification ratings may be available should the user have such requirements. Please contact your International Rectifier sales representative for further information.

††† Higher MSL ratings may be available for the specific package types listed here. Please contact your International Rectifier sales representative for further information.

Absolute Maximum Ratings

Absolute Maximum Ratings indicate sustained limits beyond which damage to the device may occur. All voltage parameters are absolute voltages referenced to COM. The thermal resistance and power dissipation ratings are measured under board mounted and still air conditions.

Symbol	Definition	Min.	Max.	Units
V _B	High-side floating supply voltage	-0.3	625	
Vs	High-side floating supply offset voltage	V _B - 20	V _B + 0.3	
V _{HO}	High-side floating output voltage	V _S -0.3	V _B + 0.3	
V _{CC}	Low-side fixed supply voltage	-0.3	25	V
V _{LO}	Low-side output voltage	-0.3	V _{CC} + 0.3	·
V _{DD}	Logic supply voltage	-0.3	V _{SS} + 20 (†)	
V _{SS}	Logic supply offset voltage	V _{CC} - 20	V _{CC} + 0.3	
V _{IN}	Logic input voltage (HIN, LIN & SD)	V _{SS} -0.3	V _{DD} + 0.3	
dV _S /dt	Allowable offset supply voltage transient (Fig. 2)	—	50	V/ns
PD	Package power dissipation @ TA \leq 25°C	—	2.08	W
R th _{JA}	Thermal resistance, junction to ambient	—	36	°C/W
TJ	Junction temperature	—	150	
Ts	Storage temperature	-55	150	°C
TL	Lead temperature (soldering, 10 seconds)	—	300	

† All supplies are fully tested at 25 V, and an internal 20 V clamp exists for each supply.

Recommended Operating Conditions

The input/output logic timing diagram is shown in Figure 1. For proper operation the device should be used within the recommended conditions. The V_s and V_{ss} offset rating are tested with all supplies biased at 15 V differential.

Symbol	Definition	Min.	Max.	Units
VB	High-side floating supply absolute voltage	V _s +10	V _S +20	
Vs	High-side floating supply offset voltage	+	600	
V _{HO}	High-side floating output voltage	Vs	V _B	
V _{cc}	Low-side fixed supply voltage	10	20	V
V _{LO}	Low-side output voltage	0	V _{CC}	v
V_{DD}	Logic supply voltage	V _{SS} + 3	V _{SS} + 20	
V _{SS}	Logic ground offset voltage	-5 (††)	5	
V _{IN}	Logic input voltage (HIN, LIN & SD)	V _{SS}	V _{DD}	
T _A	Ambient temperature	-40	125	°C

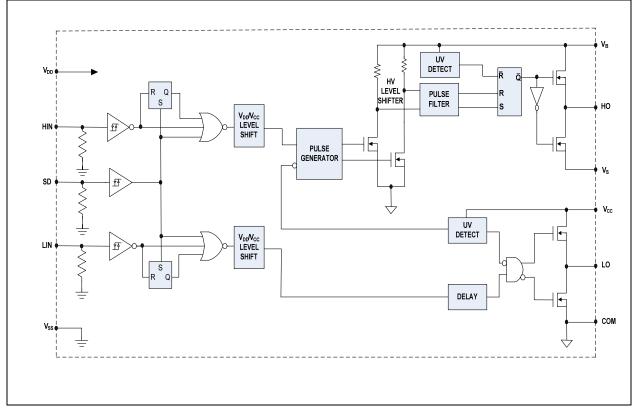
 Logic operational for V_S of -4 V to +500 V. Logic state held for V_S of -4 V to - V_{BS}. (Please refer to the Design Tip DT97 -3 for more details).

†† When $V_{DD} < 5$ V, the minimum V_{SS} offset is limited to $-V_{DD}$.

International **IOR** Rectifier

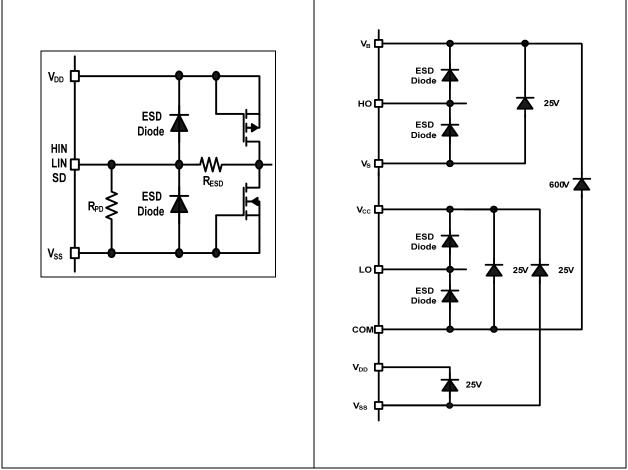
Static Electrical Characteristics

 V_{BIAS} (V_{CC} , V_{BS} , V_{DD}) = 15 V, T_A = 25°C and V_{SS} = COM unless otherwise specified. The V_{IL} , V_{TH} and I_{IN} parameters are referenced to V_{SS} and are applicable to all three logic input leads: HIN, LIN and SD. The V_{O} , and I_{O} parameters are referenced to COM and are applicable to the respective output leads: HO or LO.


Symbol	Definition		Тур	Мах	Units	Test Conditions
V _{IH}	Logic "1" input voltage	9.5	—			
VIL	Logic "0" input voltage	—	—	6.0	V	
V _{OH}	High level output voltage, V _{BIAS} - V _O	—	—	1.4	v	I ₀ = 0 A
V _{OL}	Low level output voltage, V_{O}	—	—	0.15		l _o = 20 mA
I _{LK}	Offset supply leakage current	_	_	50		$V_{\rm B} = V_{\rm S} = 600$ V
I _{QBS}	Quiescent V _{BS} supply current		125	230		
I _{QCC}	Quiescent V _{cc} supply current		180	340	μA	V _{IN} = 0 V or V _{DD}
I _{QDD}	Quiescent V _{DD} supply current		15	30		• 00
I _{IN+}	Logic "1" input bias current		20	40		$V_{IN} = V_{DD}$
I _{IN-}	Logic "0" input bias current	_		5.0		$V_{IN} = 0 V$
V_{BSUV+}	V_{BS} supply undervoltage positive going threshold	7.5	8.6	9.7		
V _{BSUV-}	V _{BS} supply undervoltage negative going threshold	7.0	8.2	9.4	V	
V _{CCUV+}	V _{CC} supply undervoltage positive going threshold	7.4	8.5	9.6	v	
V _{CCUV-}	V _{CC} supply undervoltage negative going threshold	7.0	8.2	9.4		
I _{O+}	Output high short circuit pulsed current	2.0	2.5	_	А	$V_{O} = 0 V,$ $V_{IN} = V_{DD}$ $PW \le 10 \text{ us}$
I _{O-}	Output low short circuit pulsed current	2.0	2.5		~	$V_{O} = 15 V,$ $V_{IN} = 0 V$ $PW \le 10 us$

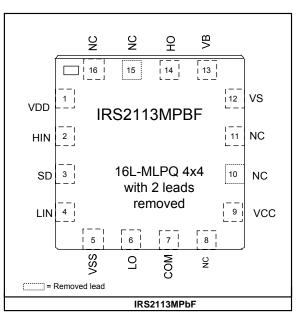
Dynamic Electrical Characteristics

 V_{BIAS} (V_{CC}, V_{BS}, V_{DD}) = 15 V, C_L = 1000 pF, T_A = 25°C and V_{SS} = COM unless otherwise specified. The dynamic electrical characteristics are measured using the test circuit shown in Fig. 3.


Symbol	Definition	Min	Тур	Max	Units	Test Conditions
t _{on}	Turn-on propagation delay	—	130	200		$V_{\rm S}$ = 0 V
t _{off}	Turn-off propagation delay	—	120	190		V _S = 600 V
t _{sd}	Shutdown propagation delay	—	130	160	ns	v _s = 000 v
t r	Turn-on rise time	—	25	35	115	
t _f	Turn-off fall time	—	17	25		
MT	Delay matching, HS & LS turn on/off	—		20		

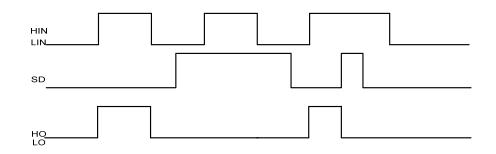
Functional Block Diagram

International **tor** Rectifier



International **TOR** Rectifier

Lead Definitions


PIN	Symbol	Description			
1	V_{DD}	Logic supply			
2	HIN	Logic input for high-side gate driver output (HO), in phase			
3	SD	Logic input for shutdown			
4	LIN	Logic input for low-side gate driver output (LO), in phase			
5	V_{SS}	Logic ground			
6	LO	Low-side gate drive output			
7	COM	Low-side return			
8	NC	No Connection			
9	V_{CC}	Low-side supply			
10	NC	No Connection (pin removed)			
11	NC	No Connection			
12	Vs	High-side floating supply return			
13	V _B	High-side floating supply			
14	НО	High-side gate drive output			
15	NC	No Connection (pin removed)			
16	NC	No Connection			

Lead Assignments

Application Information and Additional Details

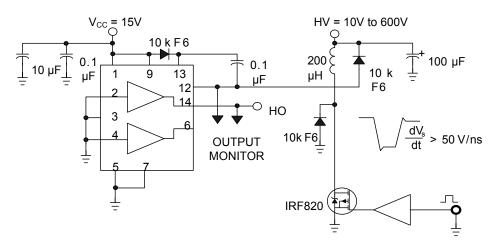
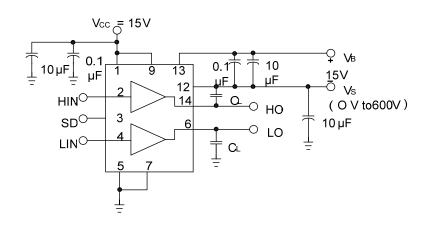
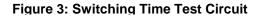




Figure 2: Floating Supply Voltage Transient Test Circuit

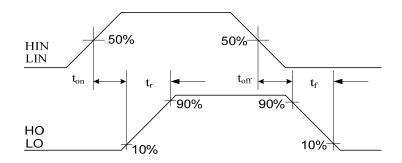


Figure 4: Switching Time Waveform Definitions

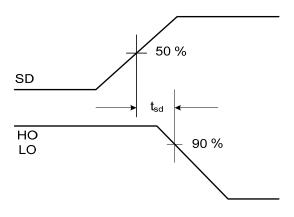


Figure 5: Shutdown Waveform Definitions

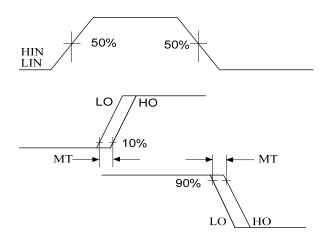
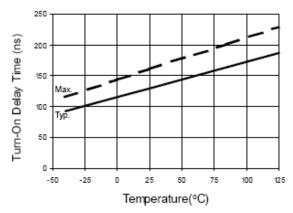
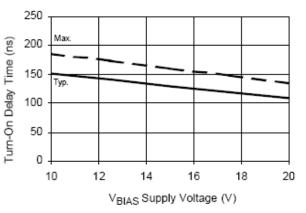




Figure 6: Delay Matching Waveform Definitions

International **ICR** Rectifier

Parameter Temperature Trends

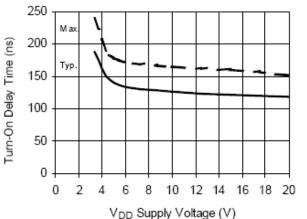


Figure 7C. Turn-On Time vs. V_{DD} Supply Voltage

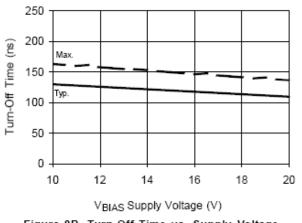


Figure 8B. Turn-Off Time vs. Supply Voltage

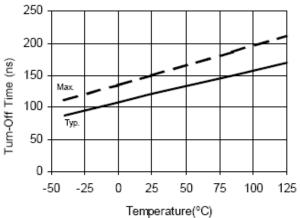
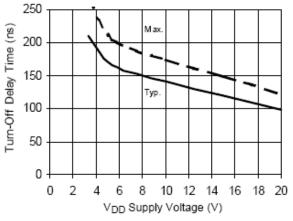
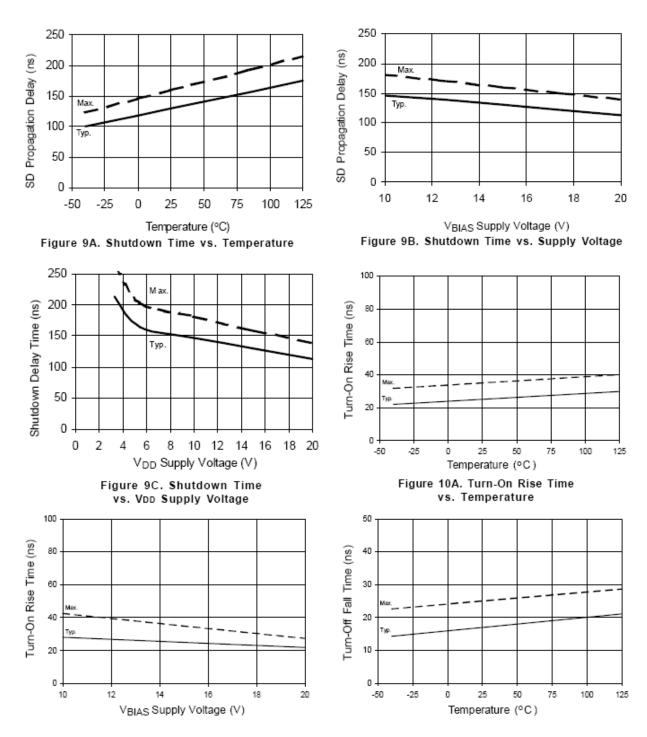
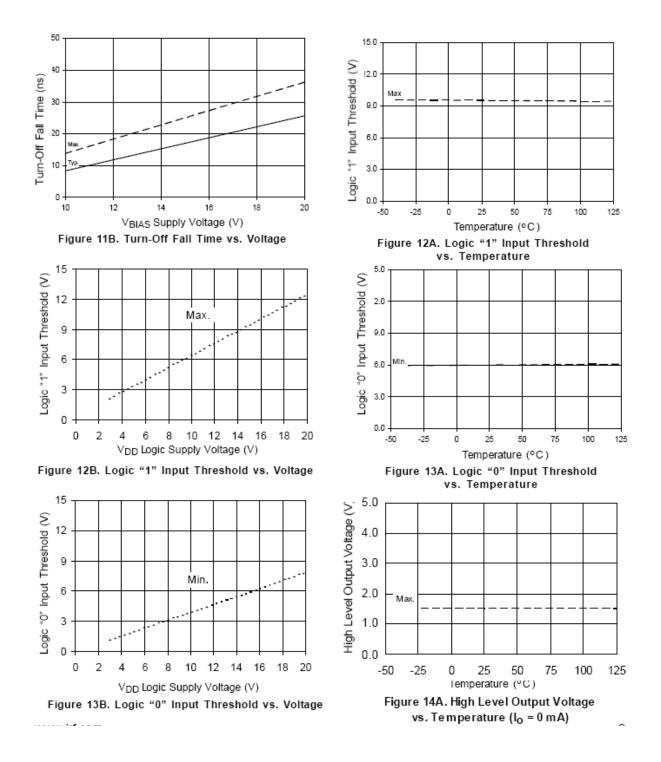
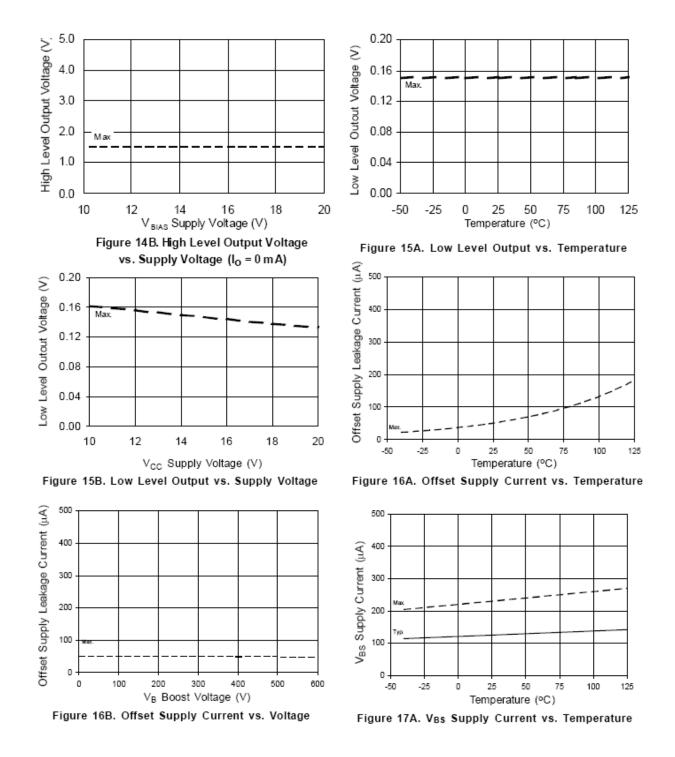


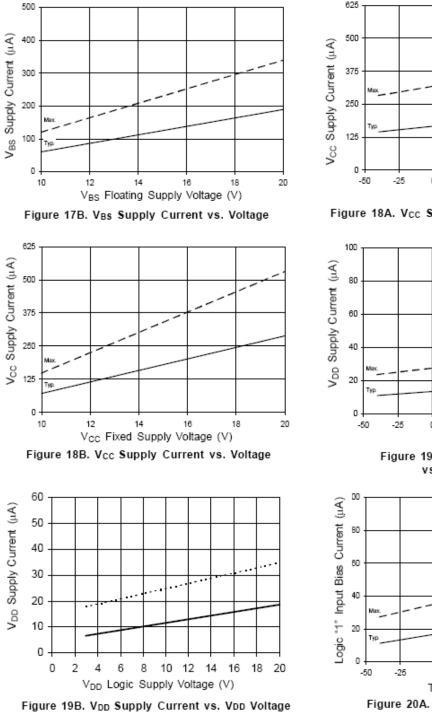
Figure 8A. Turn-Off Time vs. Temperature


Figure 8C. Turn-Off Time vs. Vod Supply Voltage

International **IOR** Rectifier





International **ICR** Rectifier

International **ICR** Rectifier

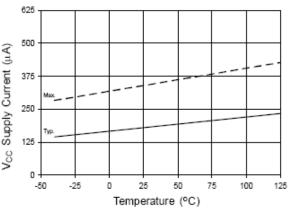
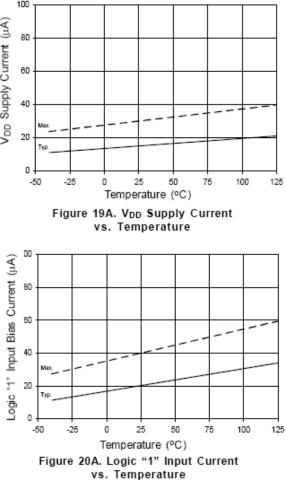
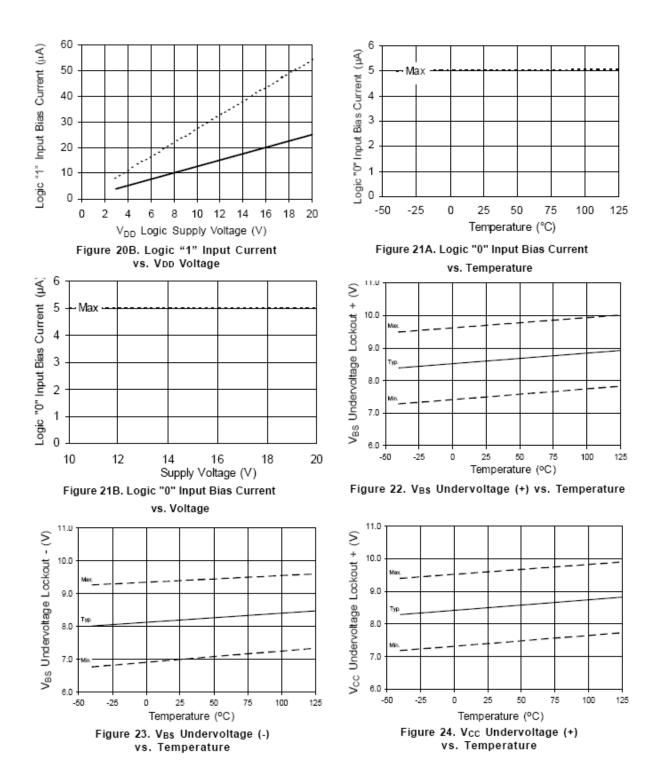
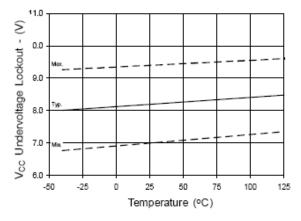






Figure 18A. Vcc Supply Current vs. Temperature

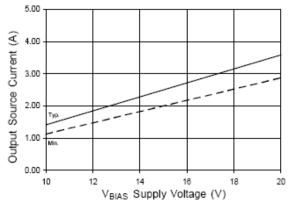
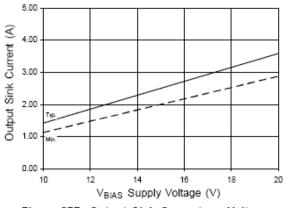
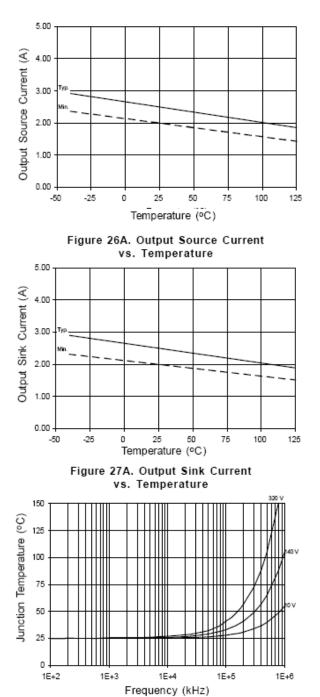
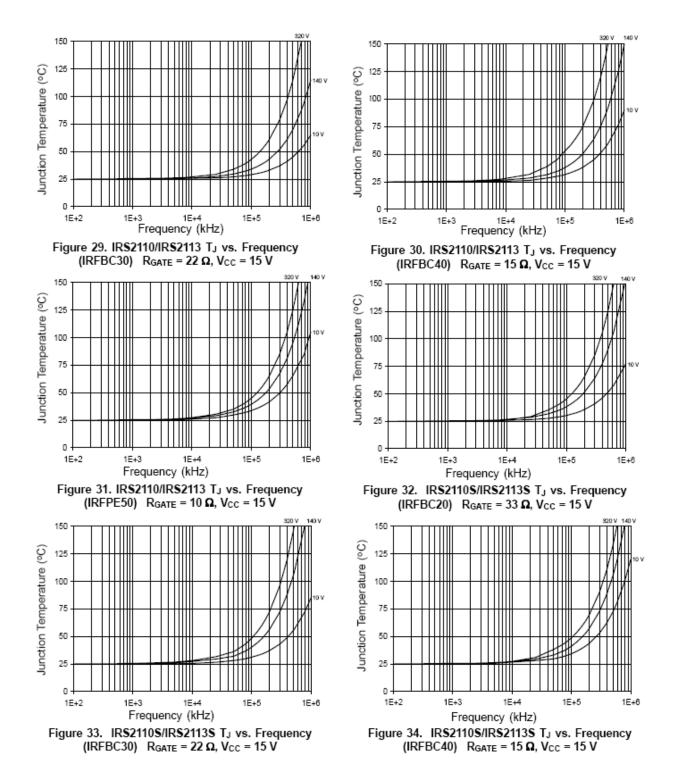
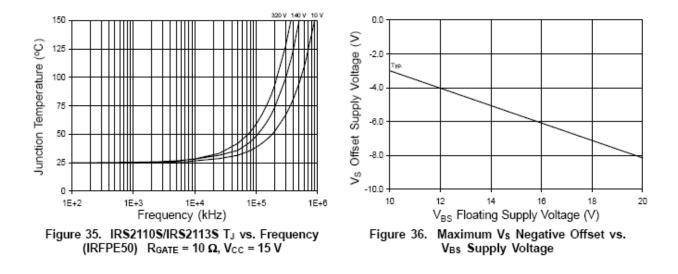
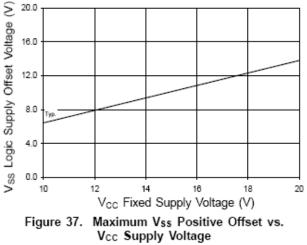



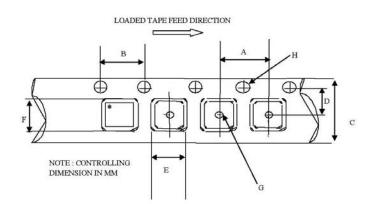
Figure 26B. Output Source Current vs. Voltage

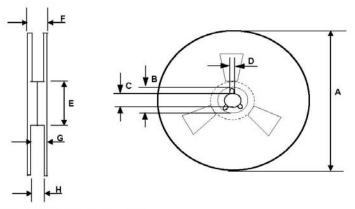

Figure 28. IRS2110/IRS2113 T_J vs. Frequency (IRFBC20) $R_{GATE} = 33 \Omega$, V_{CC} = 15 V

IRS2113MPBF

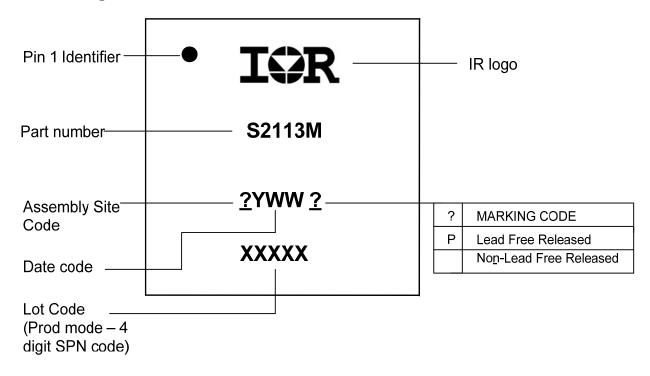
International **IOR** Rectifier



Package Details: MLPQ 4x4 -16L


SY MBO-	VGGD-10					
B	MILLIMETERS				INCHES	
Ľ	MIN	NOM	MAX	MIN	NOM	MAX
Α	0.80	0.90	1.00	.032	.035	.039
A1	0.00	0.02	0.05	.000	.0008	.0019
A3		0.20 RE	=		.008 REF	
b	0.18	0.25	0.30	.007	.010	.012
D2	1.78	1.88	1.98	.070	.074	.078
D	4.00 BSC			.157 BSC		
E		4.00 BS	0	.157 BSC		
E2	1.78	1.88	1.98	.070	.074	.078
L	0.30	0.40	0.50	.012	.016	.020
е)	0.50 PITC	н	.020 PITCH		
Ν		16		16		
ND		4		4		
NE	4			4		
aaa	0.15			.0059		
bbb	0.10			.0039		
CCC	0.10			.0039		
ddd		0.05			.0019	

Tape and Reel Details: MLPQ 4x4


CARRIER TAPE DIMENSION FOR MLPQ4X4V

	Me	tric	Imp	perial	
Code	Min	Max	Min	Max	
A	7.90	8.10	0.311	0.358	
В	3.90	4.10	0.154	0.161	
С	11.70	12.30	0.461	0.484	
D	5.45	5.55	0.215	0.219	
E F	4.25	4.45	0.168	0.176	
F	4.25	4.45	0.168	0.176	
G	1.50	n/a	0.059	n/a	
Н	1.50	1.60	0.059	0.063	

	Me	tric	Imp	erial
Code	Min	Max	Min	Max
A	329.60	330.25	12.976	13.001
A B C	20.95	21.45	0.824	0.844
С	12.80	13.20	0.503	0.519
D	1.95	2.45	0.767	0.096
E	98.00	102.00	3.858	4.015
F	n/a	18.40	n/a	0.724
G H	14.50	17.10	0.570	0.673
Н	12.40	14.40	0.488	0.566

Part Marking Information:

Ordering Information

Deee Deut Number	Deckeye Trees	Standard	Pack	Complete Part Number	
Base Part Number	umber Package Type For		Quantity	Complete Part Number	
		Tube/Bulk	92	IRS2113MPBF	
IRS2113	MLPQ 4x4-16L	Tape and Reel	3,000	IRS2113MTRPBF	

The information provided in this document is believed to be accurate and reliable. However, International Rectifier assumes no responsibility for the consequences of the use of this information. International Rectifier assumes no responsibility for any infringement of patents or of other rights of third parties which may result from the use of this information. No license is granted by implication or otherwise under any patent or patent rights of International Rectifier. The specifications mentioned in this document are subject to change without notice. This document supersedes and replaces all information previously supplied.

For technical support, please contact IR's Technical Assistance Center http://www.irf.com/technical-info/

> WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245 Tel: (310) 252-7105