TECHNICAL NOTE

[SI

Large Current External FET Controller Type Switching Regulators

High-frequency Step-down Switching Regulator(Controller type) BD9850FVM

Dual-output Step-up, Negative, Step-down Switching Regulator(Controller type) BD9851EFV

Description

The BD9850FVM is a 1-channel DC/DC step-down switching regulator controller, while the BD9851EFV is a 2-channel DC/DC step-down switching regulator controller. The BD9850FVM is adaptable for a maximum switching frequency of 2 MHz and the BD9851EFV for that of 3 MHz. Both provide space saving in all applications.

Features

- 1) Adaptable for 2-MHz switching frequency (externally variable) (BD9850FVM) Adaptable for 3-MHz switching frequency (externally variable) (BD9851EFV)
- 2) FET direct drive
- 3) High-accuracy reference voltage (Accuracy: ±1%)
- 4) Built-in Under Voltage Lock Out circuit (UVLO)
- 5) Built-in Thermal Shutdown circuit (TSD)
- 6) The BD9851EFV provides two channels:

Channel 1 available for selection of step-down/step-up switching

Channel 2 available for selection of step-down/inverting switching.

7) Compact MSOP8 package (BD9850FVM) / HTSSOP-B20 package (BD9851EFV)

Applications

TFT panel, TA/Router, digital consumer electronics, PC, and portable CD/DVD/DVC

Product lineup

	BD9850FVM	BD9851EFV
Input range	4V to 9V	4V to 18V
Oscillation frequency range	100kHz to 2MHz	10kHz to 3MHz
External synchronization	Not provided	Not provided
Standby function	Not provided	Provided
Operating temperature	−40°C to 85°C	−40°C to 85°C
Package	MSOP8	HTSSOP-B20

● Absolute maximum ratings (Ta=25°C)

OBD9850FVM

ltem	Symbol	Rating	Unit
Power supply voltage	Vcc	10	V
Storage temperature	Tstg	–55 to +150	°C
Operating temperature	Topr	-40 to +85	°C
Power dissipation	Pd	587 [*]	mW
Maximum junction temperature	Tjmax	+150	°C

*Reduce by 4.7 mW/°C over 25°C (When mounted on PCB of 70mm×70mm×1.6mm)

O BD9851EFV

Item	Symbol	Rating	Unit
Power supply voltage (Between Vcc and GND)	Vcc	20	V
Between VREF and GND	VREF	7	V
Between OUT1 and PVcc1 Between OUT2 and PVcc2	Vouth	20	V
Between OUT1, OUT2 and PGND	Voutl	20	V
Power dissipation	Pd	1000 ^(*)	mW
Operating temperature	Topr	-40 to +85	۰C
Maximum junction temperature	Tjmax	+150	°C
Storage temperature	Tstg	–55 to +150	°C

(*)Reduce by 8.0 mW/°C over 25°C (When mounted on PCB of 70mm×70mm×1.6mm)

Recommended operating range

⊖ BD9850FVM

ltem	Symbol		Unit			
	Symbol	min.	Тур.	max.	onit	
Power supply voltage	Vcc	4	7	9	V	
Oscillation frequency	fosc	100	-	2000	kHz	
Operating temperature	Topr	-40	-	+85	°C	

O BD9851EFV

ltem	Symbol		Unit			
	Symbol	min.	Тур.	max.	onit	
Power supply voltage	Vcc	4	12	18	V	
Oscillation frequency	fosc	10	300	3000	kHz	
Timing resistor	Rrt	3.3	-	47	kΩ	
Timing capacitor	Сст	33	-	10000	pF	

O BD9850FVM

Electrical characteristics (Unless otherwise specified, Ta=25°C, Vcc=7V, fosc=600kHz)

ltem	Symbol		Limits		Unit	Conditions
	59111501	min.	Тур.	max.	onne	Conditions
[Oscillator block]			1	[
Oscillation frequency	fosc	510	600	690	kHz	$Rrt = 24k\Omega$
Frequency regulation	FDV	-5	0	5	%	Vcc = 4V to 9V
Oscillator amplitude voltage	Vpptr	-	0.5	_	V	*
[Soft start/SW block]			1	1	I	
CTL/SS pin sink current	ISS	-1.90	-1.00	1.00	μΑ	VCTL/SS = 1.5V
CTL/SS pin clamp voltage	VSS	2.2	2.4	2.6	V	
CTL threshold voltage	VCTLTH	1.2	1.3	1.4	V	
[PWM comparator block]						
0% threshold voltage	D0	1.5	1.6	1.7	V	fosc = 600kHz
100% threshold voltage	D100	2.0	2.1	2.2	V	fosc = 600kHz
[Error Amp block]						
Threshold voltage	VIN	0.98	1.00	1.02	V	AV = 0dB *
Frequency bandwidth	BW	1.5	3.0	-	MHz	*
Voltage gain	Av	-	70	-	dB	
Input bias current	IIB	-150	-70	-	hA	
Maximum output voltage	VCH	2.3	2.4	2.6	V	
Minimum output voltage	VCL	_	0.03	0.20	V	
Output source current	IOI	-3.1	-1.6	-1.0	mA	VFB = 1.0V
Output sink current	100	12	50	125	mA	VFB = 1.0V
[VREF block]				,		
VREF output voltage	VREF	2.475	2.500	2.525	V	IVREF = 0mA
FREF load regulation	ΔVREFIO	-	-	10	mV	IVREF = 0mA to -1mA
VREF current capacitance	IVREF	-45	-16	-1	mA	
[Total device]					1	
Standby current	ICCS	420	610	960	μA	
Average supply current	ICCA	3.4	5.0	7.8	mA	At no load
[Output block]					1	
ON resistance	Ron	0.9	2.5	8.0	Ω	
Output transient time	Tr/Tf	_	20	_	nsec	Cout = 1000pF *
[Under voltage lockout block]		1	1	1	1	1
Threshold voltage	VUT	3.7	3.8	3.9	V	Vcc sweep down
Hysteresis width	VUThy	0.05	0.10	0.15	V	

*Design guarantee *Not designed to be radiation-resistant.

O BD9851EFV

Electrical characteristics (Unless otherwise specified, Ta=25°C, Vcc=12V, fosc=300kHz, STB=3V)

ltem	Symbol	min.	Limits Typ.	max.	Unit	Conditions
[Total device]			.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		<u> </u>	1
Standby mode circuit current	lccst	-	-	5	μA	STB=0V
Operation mode circuit current	lcc	1.5	2.5	4.1	mA	FB1, FB2=0V
[Reference voltage block]	1	<u> </u>		1	I	
Output voltage	VREF	2.475	2.500	2.525	V	lo=-0.1mA
Input stability	DVli	-	_	10	mV	Vcc=4Vto18V, lo=-0.1mA
Load stability	DVlo	-	-	10	mV	lo=-0.1mA to -1mA
Short circuit mode output current	los	-45	-12	-3	mA	
[Oscillator block]						
Oscillation frequency	fosc	270	300	330	kHz	Rrt=24kΩ, Cct=220pF
Oscillation frequency regulation	Dfosc	-2	0	2	%	Vcc=4Vto18V
[Error Amp block]						
Threshold voltage	Vthea	0.98	1.00	1.02	V	Ch1
Input offset voltage	Vofst	-10	0	10	mV	Ch2
Common-mode input voltage range	Vcm	0.3	-	2.0	V	Ch2
Input bias current	lbias	-150	-70	-	nA	
Voltage gain	Av	60	75	90	dB	DC *Design guarantee
Frequency bandwidth	Bw	3	6	13	MHz	MHz *Design guarantee
Maximum output voltage	Vfbh	VREF-0.1	_	VREF	V	
Minimum output voltage	Vfbl	-	-	0.1	V	
Output sink current	lsink	1.6	6	16	mA	FB pin
Output source current	lsource	-260	-160	-90	μΑ	FB pin
[PWM comparator block]						
0% threshold voltage	Vth0	1.21	1.31	1.41	V	FB voltage
100% threshold voltage	Vth100	1.74	1.84	1.94	V	FB voltage
DTC bias current	ldtc	-1	_	1	μΑ	
[FET driver block]						
011	RonN	1.5	3	3	Ω	When OUT=Lo
ON resistance	RonP	1	2	2	Ω	When OUT=Hi
	Vselh	Vcc-0.2	-	_	V	In step-down switching
SEL1 input voltage range	Vsell	0	-	-	V	In step-down switching
[Control block]						
Threshold voltage	Vstb	0.6	1.5	1.5	V	
Sink current	lstb	6	15	15	μΑ	STB=3V
[Short circuit protection circuit (S	CP) block]					
Timer start voltage	Vtime	2.2	2.3	2.3	V	FB voltage
Threshold voltage	Vthscp	1.4	1.5	1.5	V	SCP voltage
Standby mode voltage	Vstscp	_	10	10	mV	SCP voltage
Source current	Vsoscp	-3.2	-2.0	-2.0	μΑ	SCP=0.75V
[Under voltage lockout block (UV	LO)]					
Threshold voltage	Vuvlo	3.58	3.7	3.7	V	Vcc sweep down
Hysteresis width	DVuvlo	0.05	0.11	0.11	V	

*Design guarantee

 Characteristic data (BD9850FVM)

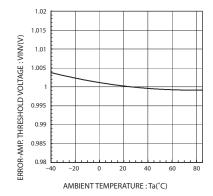


Fig.1 Error Amp threshold voltage vs. Ambient temperature

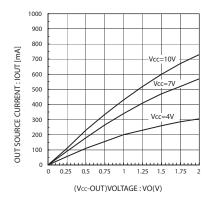


Fig.3 (Vcc-OUT) Voltage vs. Output source current

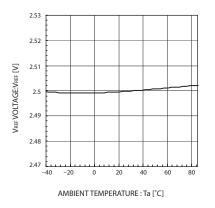


Fig.5 VREF vs. Ambient temperature

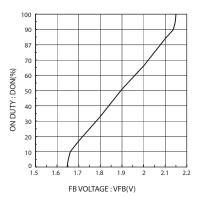


Fig.2 FB voltage vs. ON Duty

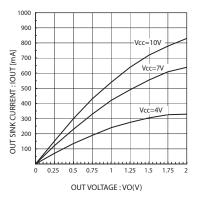


Fig.4 Output voltage vs. Output sink current

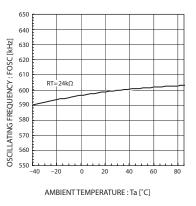


Fig.6 Oscillation frequency vs. Ambient temperature

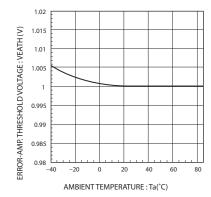


Fig.7 Error Amp threshold voltage vs. Ambient temperature

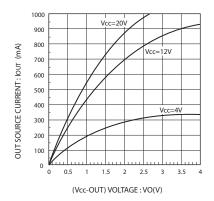


Fig.9 (Vcc-OUT) Voltage vs. Output source current

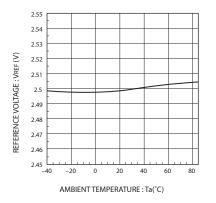


Fig.11 VREF vs. Ambient temperature

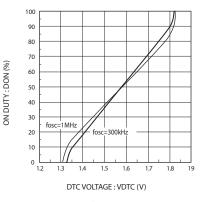


Fig.8 FB voltage vs. ON Duty

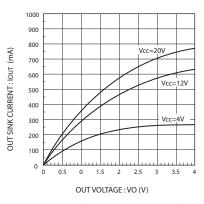


Fig.10 Output voltage vs. Output sink current

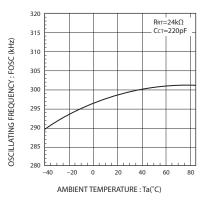
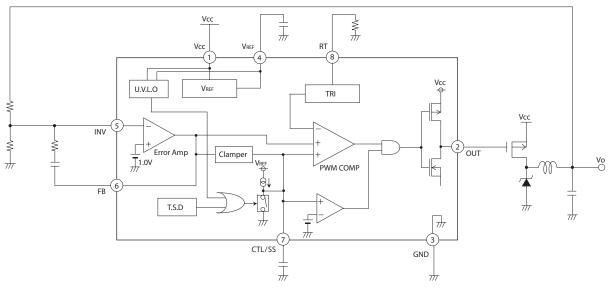
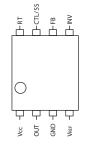




Fig.12 Oscillation frequency vs. Ambient temperature

(BD9850FVM)

	P
구 다 다 다	
GND . VREF	

Fig.13 BD9850FVM Block diagram

Pin No

1

2

3

Pin No.	Pin name	Function
1	Vcc	Power supply
2	OUT	FET driver drive output
3	GND	Ground
4	VREF	Reference voltage (2.5V±1%) output
5	INV	Error Amp inverting input
6	FB	Error Amp output
7	CTL/SS	Control/Soft start common
8	RT	Oscillation frequency setting resistor connection

Pin name


SEL1

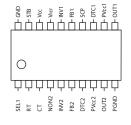
RT

СТ

reverse

(BD9851EFV)

Error Amp non-inverting input (CH2) 4 NON2 5 INV2 Error Amp inverting input (CH2) 6 FB2 Error Amp output (CH2) 7 DTC2 Maximum duty/soft start setting (CH2) PVcc2 FET driver block power supply input (CH2) 8 9 OUT2 FET driver block output (CH2) 10 PGND FET driver block ground 11 OUT1 FET driver block output (CH1) PVcc1 12 FET driver block power supply input (CH1) 13 DTC1 Maximum duty/soft start setting (CH1) 14 SCP Short circuit protection timer setting capacitor connection FB1 15 Error Amp output (CH1) 16 INV1 Error Amp inverting input (CH1) 17 VREF Reference voltage (2.5V±1%) output 18 Vcc Power supply input 19 STB ON/OFF control 20 GND Ground Make FIN on the reverse open or ground to GND (pin 20) (However, open FIN on the reverse will degrade radiation performance.) FIN on _


Function

CH1 drive FET setting (Vcc short: P-ch drive, GND short: N-ch drive)

Oscillation frequency setting resistor connection

Oscillation frequency setting capacitor connection

Description of operations

1) Reference voltage block

The reference voltage block generates a constant voltage with temperature compensated through inputting the power supplied from the Vcc pin. The output voltage is 2.5 V, with a $\pm 1\%$ accuracy. To cancel noises, insert a capacitor with a low ESR (several tens of m Ω) between the VREF and GND pins. It is recommended to use a ceramic capacitor of 1µF for this purpose.

2) Triangular wave oscillator block

By connecting the resistor and capacitor of frequency settings to the RT and CT pins (only to RT pin on the BD9850FVM), a triangular wave will be generated and then input to the PWM comparators of Channels 1 and 2.

3) Error Amp block

The Error Amp block detects the output voltage of the INV pin, amplifies an error with the set output voltage, and then outputs the error from the FB pin. The comparison voltage is 1 V, with a $\pm 2\%$ accuracy. (The Channel 2 of the BD9851EFV uses the NON pin input voltage as a reference.)

Inserting a resistor and capacitor between the INV and FB pins will conduct phase compensation.

4) PWM comparator block

The PWM comparator block converts the output voltage (FB voltage) into a PWM waveform and outputs it to the FET driver. <Dead time control> (Only available on the BD9851EFV)

Inputting a voltage, divided by resistance of the VREF pin in the DTC pin, will allow maximum ON duty setting. <Soft start (BD9850FVM)>

Inserting a capacitor between the CTL/SS and GND pins will allow the soft start function to control the rising output voltage. <Soft start (BD9851EFV)>

Inserting a capacitor between the DTC and GND pins will allow the soft start function to control the rising output voltage. Furthermore, the overshoot of output voltage at startup can be derated. Adding a Schottky diode between the FB and DTC pins will make it possible to suppress the overshoot rate (only available with step-down application).

5) FET driver block

This block is a push-pull type driver enabling direct drive of external MOS FET.

- <Setting of step-down/step-up switching (Only available for Channel 1 of BD9851EFV)>
- For the Channel 1, SEL1 pin setting will determine the application function.

Set the SEL1 pin to step-down (P-ch drive) mode for short-circuiting Vcc or to step-up (N-ch drive) mode for short-circuiting GND. Furthermore, be sure to short-circuit the SEL1 pin to Vcc or GND pin.

6) Standby function

(BD9850FVM)

The CTL/SS pin allows for output ON/OFF control. Set the CTL/SS pin voltage to "H" to activate the output ON control. (BD9851EFV)

The STB pin allows for output ON/OFF control. Set the STB pin voltage to "H" to activate the output ON control. The standby mode circuit current should be set to less than 5 μ A.

- 7) Short circuit protection circuit (SCP) (Only available on BD9851EFV)
 - The SCP is a timer-latch type short circuit protection circuit.

If the output voltage of either channel drops below the set voltage, the Error Amp will be activated to increase the FB voltage and initiate charging the capacitor connected to the SCP pin with a 2 μ A current. When the SCP pin voltage exceeds 1.5 V, the latch circuit will be activated to fix the output of both channels at OFF and, at the same time, the DTC pin at "L" level.

In order to rest the latch circuit, set the STB pin to "L" level once, and then to "H" level. Or, turn ON the power supply again. Furthermore, if the short circuit protection circuit is not used, short-circuit the SCP pin to the GND pin.

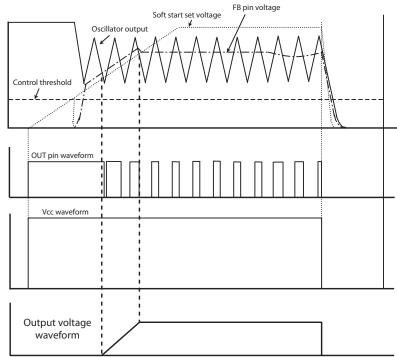
8) Under Voltage Lock Out (UVLO) circuit

The UVLO is a protection circuit to prevent the IC from malfunctioning when the power supply turns ON or if an instantaneous power interruption occurs.

When the Vcc voltage falls below 3.8 V (or 3.7 V on the BD9851EFV), the output of both channels will be fixed at "OFF" and, at the same time, the DTC pin at "L" level. Hysteresis width of 0.1 V (or 0.11 V on the BD9851EFV) is provided for the detection voltage and release voltage of the UVLO in order to prevent malfunctions of the IC which may result from variations in the input voltage due to threshold online.

Furthermore, if the latch circuit is activated through the short circuit protection circuit, the circuit will be reset by this UVLO.

9) Thermal shutdown circuit (TSD)


The TSD is a protection circuit to prevent the destruction of the IC due to abnormal heat generation.

If the TSD detects an abnormal heat generation $(175^{\circ}C)$ on the chip, the output of both channels will be fixed at "OFF" and, at the same time, the DTC pin at "L" level. Hysteresis width $(15^{\circ}C)$ is provided for the superheat detection and release temperatures in order to prevent malfunctions of the IC which may result from variations in the input voltage due to threshold online.

Furthermore, if the latch circuit is activated through the short circuit protection circuit, the circuit will be reset by this TSD.

Timing chart

 In startup/normal operation (BD9850FVM)

(BD9851EFV)

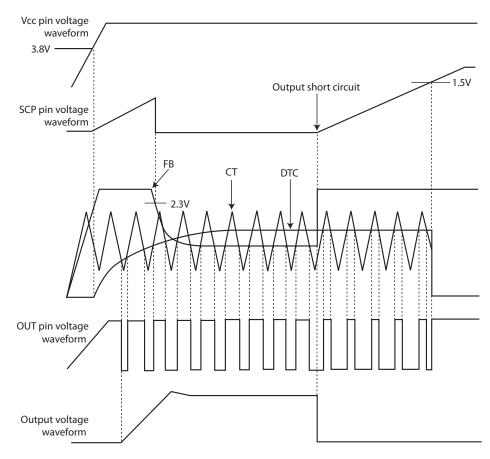
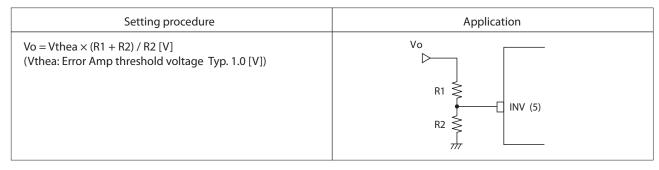
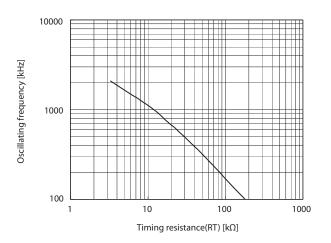



Fig.16 BD9851EFV Timing chart

Description of external components

Setting of output voltage (BD9850FVM)

Setting of output voltage for the step-down application can be calculated by the formula below :



Setting of output voltage (BD9851EFV)

Setting procedure	Application
• Step-down (CH1), Step-up (CH1) Vo1 = Vthea × (R1 + R2) / R2 [V] (Vthea: Error Amp threshold voltage Typ. 1.0 [V])	Vo1 R1 R2 777 INV1 (16)
• Step-down (CH2) Vo2 = V _{NON} 2 × (R1 + R2) / R2 [V] V _{NON} 2 = 2.5 × R4 / (R3 + R4) [V] However, set the NON2 pin voltage to 0.3 to 2.0 V.	Vo2 R1 R2 WREF (17) VREF (17) VREF (17) NON2 (4) INV2 (5)
 Inverting (CH2) Vo2 = 2.5 - {(2.5 - V_{INV}2) ¥ (R1 + R2) / R1} [V] V_{INV2} = 2.5 × R4 / (R3 + R4) [V] However, set the INV2 pin voltage to 0.3 to 2.0 V 	R1 R2 Vo2 Vae f (17) Vae f (17) INV2 (5) NON2 (4)

• Setting of oscillation frequency (BD9850FVM)

Connecting a resistor to the RT pin (pin 2) allows for the setting of oscillation frequency.

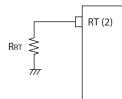


Fig.17 Setting procedure for BD9850FVM oscillation frequency

• Setting of oscillation frequency (BD9851EFV)

Connecting a resistor to the RT pin (pin 2) and a capacitor to the CT pin allows for the setting of oscillation frequency.

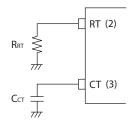
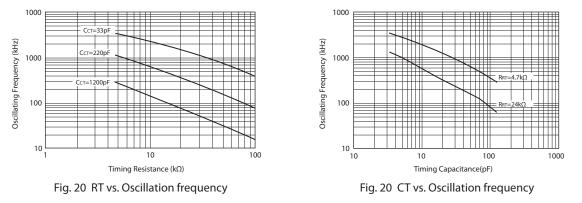



Fig. 19 Setting procedure for BD9851EFV oscillation frequency

Setting of timer of short circuit protection circuit (BD9851EFV)

Setting procedure	Application
$T_{SCP} = 7.45 \times 10^5 \times C_{SCP}$	
T _{SCP} : Time from output short circuit to latch stop [sec] O _{SCP} : Capacitance of capacitor between the SCP and GND pins [F]	C _{SCP} SCP (14)

Setting of maximum duty (BD9851EFV)

Setting procedure

 $\label{eq:DUTY} \begin{array}{l} {\sf DUTY}({\sf max.}) = 100 \times ({\sf V}_{\sf DTC} - {\sf Vth0}) \ / \ ({\sf Vth100-Vth0}) \\ {\sf V}_{\sf DTC} = 2.5 \times {\sf R2} \ / \ ({\sf R1+R2}) \end{array}$

DUTY(max.)	: Maximum duty [%]
VDTC	: DTC pin voltage [V]
Vth0	: 0% duty threshold voltage [V]
Vth100	: 100% duty threshold voltage [V]

• Pin treatment of unused channels (BD9851EFV)

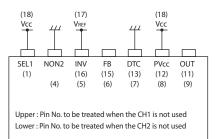
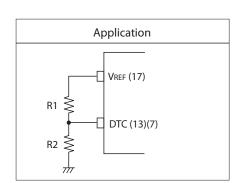
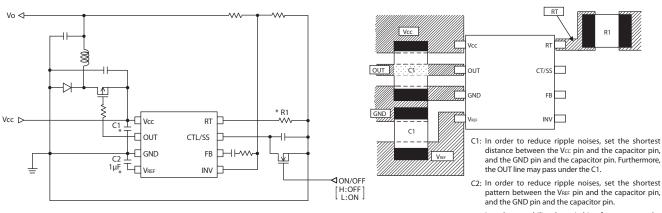
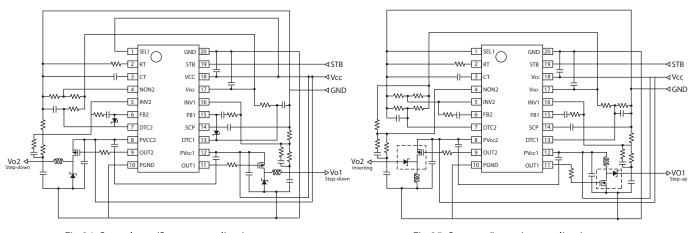




Fig. 22 Pin treatment procedure for unused channel on BD9851EFV

In order to use one channel, treat the pins of unused channel as shown above.



 Application circuit / Directions for pattern layout (BD9850FVM)

R1: In order to stabilize the switching frequency, set the smallest pattern area so that PCB parasitic capacitance for the RT pin will be minimized.

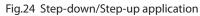


Fig.25 Step-up/Inverting application

Equivalent circuit

(BD9850FVM)

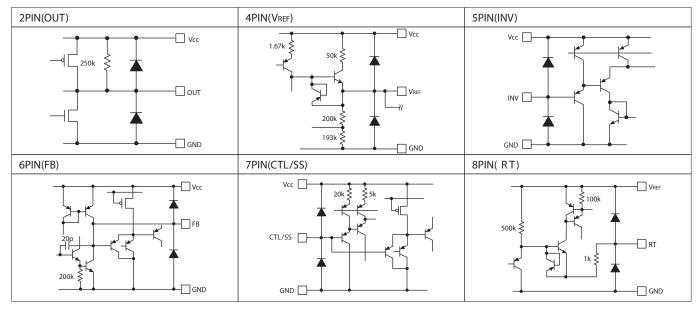


Fig.26 Equivalent circuit (BD9850FVM)

BD9851EFV

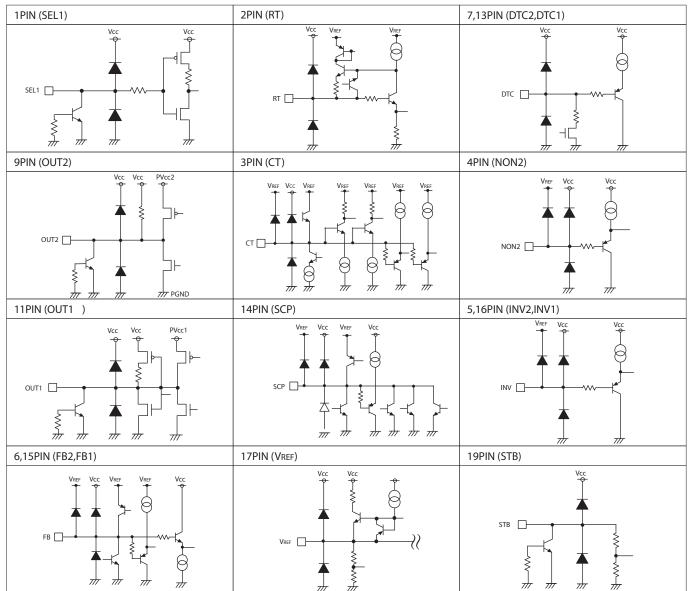


Fig.27 Equivalent circuit (BD9851EFV)

Cautions on use

1) Absolute maximum ratings

An excess in the absolute maximum ratings, such as supply voltage, temperature range of operating conditions, etc., can break down the devices, thus making impossible to identify breaking mode, such as a short circuit or an open circuit. If any over rated values will expect to exceed the absolute maximum ratings, consider adding circuit protection devices, such as fuses.

2) GND potential

Ground-GND potential should maintain at the minimum ground voltage level. Furthermore, no terminals should be lower than the GND potential voltage including an electric transients.

3) Thermal design

Use a thermal design that allows for a sufficient margin in light of the power dissipation (Pd) in actual operating conditions.

4) Inter-pin shorts and mounting errors

Use caution when positioning the IC for mounting on printed circuit boards. The IC may be damaged if there is any connection error or if positive and ground power supply terminals are reversed. The IC may also be damaged if pins are shorted together or are shorted to other circuit's power lines.

5) Operation in strong electromagnetic field

Use caution when using the IC in the presence of a strong electromagnetic field as doing so may cause the IC to malfunction.

6) Thermal shutdown circuit (TSD circuit)

The IC incorporates a built-in thermal shutdown circuit (TSD circuit). The thermal shutdown circuit (TSD circuit) is designed only to shut the IC off to prevent runaway thermal operation. It is not designed to protect the IC or guarantee its operation. Do not continue to use the IC after operating this circuit or use the IC in an environment where the operation of this circuit is assumed.

7) Testing on application boards

When testing the IC on an application board, connecting a capacitor to a pin with low impedance subjects the IC to stress. Always discharge capacitors after each process or step. Always turn the IC's power supply off before connecting it to, or removing it from a jig or fixture, during the inspection process. Ground the IC during assembly steps as an antistatic measure. Use similar precaution when transporting and storing the IC.

8) IC pin input

This monolithic IC contains P+ isolation and P substrate layers between adjacent elements to keep them isolated. Pin junctions are formed at the intersection of these P layers with the N layers of other elements, creating a parasitic diode or transistor. For example, the relation between each potential is as follows:

When GND > Pin A and GND > Pin B, the Pin junction operates as a parasitic diode.

When Pin B > GND > Pin A, the PñN junction operates as a parasitic transistor.

Parasitic diodes can occur inevitably in the structure of the IC. The operation of parasitic diodes can result in mutual interference among circuits, operational faults, or physical damage. Accordingly, methods by which parasitic diodes operate, such as applying a voltage that is lower than the GND (P substrate) voltage to an input pin, should not be used.

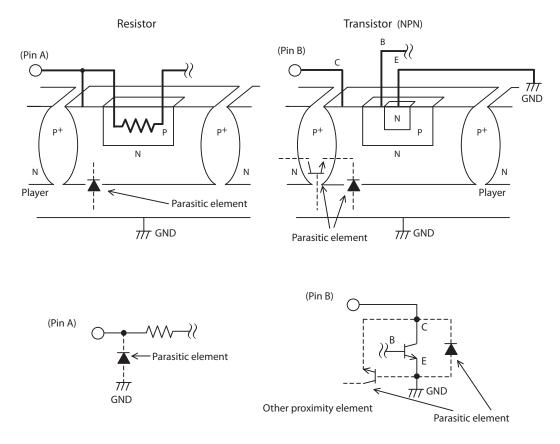


Fig. 28 Typical simple construction of monolithic IC

9) Common impedance

The power supply and ground lines must be as short and thick as possible to reduce line impedance. Fluctuating voltage on the power ground line may damage the device.

10) On the application shown below, Vcc is short-circuited to the Ground with external diode charged, internal circuits may be damaged. recommended to insert a backflow prevention diode in series with the Vcc or a bypass diode between each pin and Vcc.

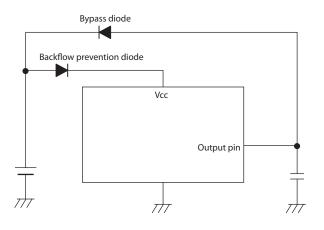
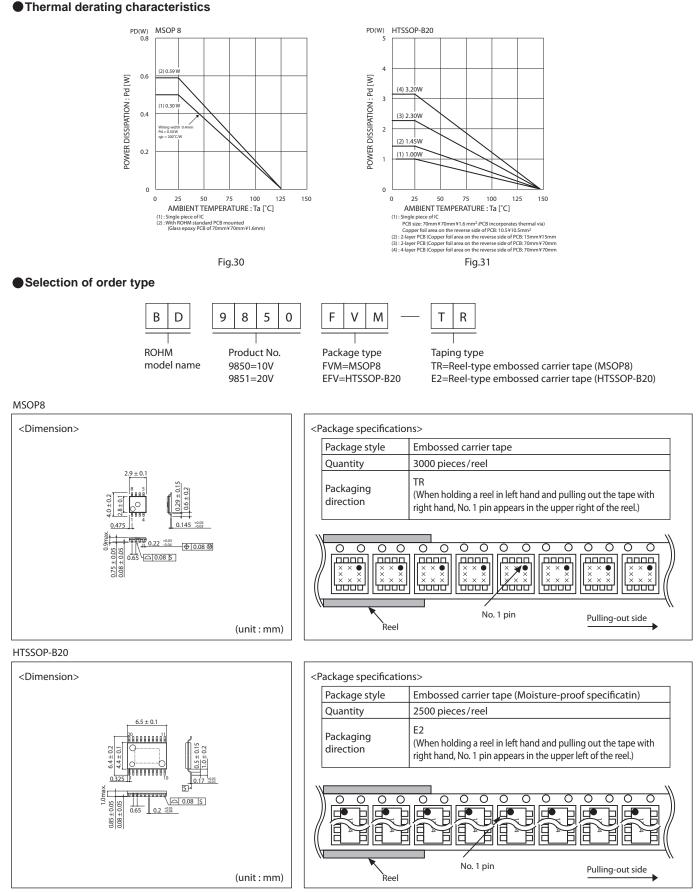



Fig. 29

- 11) Although ROHM is confident that the example application circuit reflects the best possible recommendations, be sure to verify circuit characteristics for your particular application. Modification of constants for other externally connected circuits may cause variations in both static and transient characteristics for external components as well as this Rohm IC. Allow for sufficient margins when determining circuit constants. Oscillation frequency setting resistor
- 12) For the oscillation frequency setting resistor to be inserted between the RT pin and the GND pin, mount this resistor close to the RT pin and provide the shortest pattern routing.

15/15

Notes

- No technical content pages of this document may be reproduced in any form or transmitted by any means without prior permission of ROHM CO.,LTD.
- The contents described herein are subject to change without notice. The specifications for the
 product described in this document are for reference only. Upon actual use, therefore, please request
 that specifications to be separately delivered.
- Application circuit diagrams and circuit constants contained herein are shown as examples of standard use and operation. Please pay careful attention to the peripheral conditions when designing circuits and deciding upon circuit constants in the set.
- Any data, including, but not limited to application circuit diagrams information, described herein are intended only as illustrations of such devices and not as the specifications for such devices. ROHM CO.,LTD. disclaims any warranty that any use of such devices shall be free from infringement of any third party's intellectual property rights or other proprietary rights, and further, assumes no liability of whatsoever nature in the event of any such infringement, or arising from or connected with or related to the use of such devices.
- Upon the sale of any such devices, other than for buyer's right to use such devices itself, resell or
 otherwise dispose of the same, no express or implied right or license to practice or commercially
 exploit any intellectual property rights or other proprietary rights owned or controlled by
- ROHM CO., LTD. is granted to any such buyer.
- Products listed in this document are no antiradiation design.

The products listed in this document are designed to be used with ordinary electronic equipment or devices (such as audio visual equipment, office-automation equipment, communications devices, electrical appliances and electronic toys).

Should you intend to use these products with equipment or devices which require an extremely high level of reliability and the malfunction of which would directly endanger human life (such as medical instruments, transportation equipment, aerospace machinery, nuclear-reactor controllers, fuel controllers and other safety devices), please be sure to consult with our sales representative in advance.

It is our top priority to supply products with the utmost quality and reliability. However, there is always a chance of failure due to unexpected factors. Therefore, please take into account the derating characteristics and allow for sufficient safety features, such as extra margin, anti-flammability, and fail-safe measures when designing in order to prevent possible accidents that may result in bodily harm or fire caused by component failure. ROHM cannot be held responsible for any damages arising from the use of the products under conditions out of the range of the specifications or due to non-compliance with the NOTES specified in this catalog.

Thank you for your accessing to ROHM product informations. More detail product informations and catalogs are available, please contact your nearest sales office.

ROHM Customer Support System

THE AMERICAS / EUROPE / ASIA / JAPAN

www.rohm.com

Contact us : webmaster@rohm.co.jp

Copyright © 2008 ROHM CO.,LTD. ROHM CO., LTD. 21 Saiin Mizosaki-cho, Ukyo-ku, Kyoto 615-8585, Japan TEL : +81-75-311-2121 FAX : +81-75-315-0172

Appendix1-Rev2.0

rohm