Принцип работы термоэлектрических модулей

В основе работы термоэлектрического охлаждающего модуля лежит эффект, открытый французским часовщиком Жаном Пельтье, который в 1834 г. обнаружил, что при протекании электрического тока в цепи, состоящей из разнородных проводников, в местах контактов проводников поглощается или выделяется, в зависимости от направления тока, теплота. При этом количество поглощаемого тепла пропорционально току, проходящему через контакт проводников. Наиболее сильно эффект Пельтье проявляется на контактах полупроводников с различным типом проводимости (p- или n-) или, другими словами, в p-n переходе. На языке классической физики объяснение эффекта Пельтье заключается во взаимодействии электронов проводимости, замедлившихся или ускорившихся в контактном потенциале p-n перехода, с тепловыми колебаниями атомов в массиве полупроводника. В результате, в зависимости от направления движения электронов (и, соответственно, тока) происходит нагрев или охлаждение участка полупроводника, непосредственно примыкающего к p-n переходу (Рис.1).


Рис.1 Действие эффекта Пельтье при протекании тока через полупроводники p- и n-типов проводимости.

Эффект Пельтье лежит в основе работы термоэлектрического модуля (ТЭМ). Единичным элементом ТЭМ является термопара, состоящая из одного проводника p-типа и одного проводника n-типа. При последовательном электрическом соединении нескольких таких термопар теплота, поглощаемая на контакте типа n-p выделяется на контакте типа p-n. Термоэлектрический модуль представляет собой совокупность таких термопар, обычно соединяемых между собой последовательно по току и параллельно по потоку теплоты. Термопары помещаются между двух плоских керамических пластин (Рис.2). Количество термопар может изменяться в широких пределах - от нескольких единиц до тысяч пар, что позволяет создавать ТЭМ с холодильной мощностью от десятых долей ватт до сотен ватт. Наибольшей термоэектрической эффективностью среди промышленно используемых для изготовления ТЭМ материалов обладает теллурид висмута, в который для получения необходимого типа и параметров проводимости добавляют специальные примеси, например, селен и сурьму.


Рис.2. Структура полупроводникового термоэлектрического модуля.

При прохождении через ТЭМ постоянного электрического тока образуется перепад температур между его сторонами: одна пластина (холодная) охлаждается, а другая (горячая) нагревается. При использовании ТЭМ необходимо обеспечить эффективный отвод тепла с его горячей стороны, например, с помощью воздушного радиатора или водяного теплообменника. Если поддерживать температуру горячей стороны модуля на уровне температуры окружающей среды, то на холодной стороне можно получить температуру, которая будет на десятки градусов ниже. Степень охлаждения будет пропорциональна величине тока, проходящего через ТЭМ. Внешний вид типового ТЭМ представлен на Рис.3.


Рис.3. Внешний вид термоэлектрического модуля.