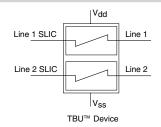


Features

- Superior circuit protection
- Overcurrent & overvoltage protection
- Blocks surges up to rated limits
- High speed performance
- Small SMT package
- RoHS compliant*
- Agency recognition: \$\square\$^\text{\tin}\text{\texi\text{\texi\texi{\text{\text{\ti}\text{\text{\texi}\text{\text{\texitt{\texit{\texi{\texi\texi{\texit{\text{\text{\texi}\text{\texit{\texi{\texi{\texi{\texi{\ti

Applications

- SLIC protection
- Cable & DSL
- MDU/MTU modems
- ONT
- Voice/DSL line cards


TBU-PL Series - TBU™ High Speed Protectors

General Information

The TBU-PL Series of Bourns® TBU™ products are low capacitance dual bidirectional high speed protection components, constructed using MOSFET semiconductor technology, and designed to protect against faults caused by short circuits, AC power cross, induction and lightning surges.

In addition to overcurrent protection, an added feature is the voltage monitoring on the two lines. If the voltage on the line drops below V_{SS} then the voltage will trigger the device to switch to the blocking state

The TBU™ high speed protector placed in the system circuit will monitor the current with the MOSFET detection circuit triggering to provide an effective barrier behind which sensitive electronics are not exposed to large voltages or currents during surge events. The TBU™ device is provided in a surface mount DFN package and meets industry standard requirements such as RoHS and Pb Free solder reflow profiles.

Agency Approval

Description						
UL	File Number: Pending					

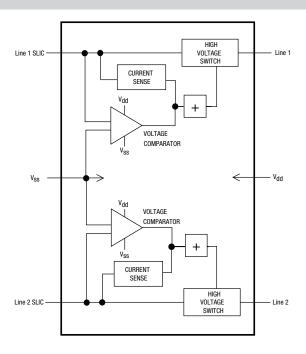
Industry Standards (in Conjunction with OVP Device)

	Industry Standard	Part Number
Telcordia GR-1089-CORE Intra-building	1500 V, 100 A 2/10 μs 120 V RMS, 25 A, 900 s	TBU-PL050-xxx-WH
	5000 V, 500 A 2/10 μs 120 V RMS, 25 A, 900 s	TBU-PL060-xxx-WH
ITU-T	K.20, K.21, K.45 Basic & Enhanced	TBU-PL085-xxx-WH

Absolute Maximum Ratings (@ T_A = 25 °C Unless Otherwise Noted)

Symbol	Parameter	Part Number	Value	Unit
		TBU-PL050-xxx-WH	500	
V _{imp}	Peak impulse voltage withstand with duration less than 10 ms	TBU-PL060-xxx-WH	600	V
		TBU-PL085-xxx-WH	850	
V _{rms}		TBU-PL050-xxx-WH	300	
	Continuous A.C. RMS voltage	TBU-PL060-xxx-WH	350	V
	-	TBU-PL085-xxx-WH	425	
T _{op}	Operating temperature range		-55 to +125	°C
T _{sta}	Storage temperature range	-65 to +150	°C	
T _{imax}	Maximum Junction Temperature	+125	°C	
ESD	HBM ESD Protection per IEC 61000-4-2 on line pads		±2	kV

Electrical Characteristics (@ T_A = 25 °C Unless Otherwise Noted)


Symbol	Parameter	Part Number	Min.	Тур.	Max.	Unit
1	Current required for the device to go from operating state to	TBU-PLxxx-100-WH	100	150	200	mA
Itrigger	protected state	TBU-PLxxx-200-WH	200	300	400	IIIA
R _{TBU}	Series resistance of the TBU™ device		40	50	55	Ω
R _{match}	Package resistance matching of the TBU™ device #1 - TBU™	device #2		±0.5	±1.0	Ω
t _{block}	Time taken for the device to go into current limiting			1	μs	
IQ	Current through the triggered TBU™ device with 50 Vdc circui	0.25	0.70	1.50	mA	
I _{ss}	Operating current with V _{ss} -50 V applied			100		μΑ
V	Voltage below which the triggered TBU™ device will	TBU-PLxxx-100-WH	12	15	22	V
V _{reset}	transition to normal operating state	TBU-PLxxx-200-WH	15	20	25	V
V_{to}	Voltage threshold offset with 60 Hz applied voltage (Vss - Vline	-1.0		0.2	V	
V _{ss}	Operating voltage range relative to V _{dd}	-180		-20	V	
R _{th(i-l)}	Junction to package pads - FR4 using minimum recommende		65		°C/W	
R _{th(j-l)}	Junction to package pads - FR4 using heat sink on board (6 c	m ²) (0.5 in. ²)		40		°C/W

^{*}RoHS Directive 2002/95/EC Jan 27 2003 including Annex.

Specifications are subject to change without notice.

Customers should verify actual device performance in their specific applications.

Functional Block Diagram

Reference Application

The TBU-PL Series are high-speed protectors used in voice/ VoIP SLIC applications. The maximum voltage rating of the TBU™ device should never be exceeded. Where necessary, an OVP device should be employed to limit the maximum voltage. A cost-effective protection solution combines Bourns® TBU™ protection devices with a pair of Bourns® MOVs. For bandwidth sensitive applications, a Bourns® GDT may be substituted for the MOV.

Basic TBU Operation

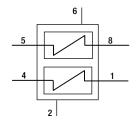
The TBU™ device, constructed using MOSFET semiconductor technology, placed in the system circuit will monitor the current with the MOSFET detection circuit triggering to provide an effective barrier behind which sensitive electronics are not exposed to large voltages or currents during surge events. The TBU™ device operates in approximately 1 µs - once line current exceeds the TBU™ device's trigger current l_{trigger}. When operated, the TBU™ device restricts line current to less than 1 mA typically. When operated, the TBU™ device will block all voltages including the surge up to rated limits.

When the voltage on the SLIC output is driven below $(V_{bat} - V_{to})$ the TBU-PL series device switches to the blocking state, regardless of output current in the device.

After the surge, the TBUTM device resets when the voltage across the TBUTM device falls to the V_{reset} level. The TBUTM device will automatically reset on lines which have no DC bias or have DC bias below V_{reset} (such as unpowered signal lines).

If the line has a normal DC bias above V_{reset} , the voltage across the TBUTM device may not fall below V_{reset} after the surge. In such cases, special care needs to be taken to ensure that the TBUTM device will reset, with software monitoring as one method used to accomplish this. Bourns application engineers can provide further assistance.

BOURNS®

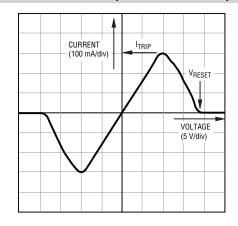

Bourns® TBU™ Device Solution

Industry Standard	Surge & AC Tests	TBU™ Device P/N	Qty.	OVP Device P/N	Qty.
Telcordia GR-1089-CORE Intra-building	1500 V, 100 A 2/10 µs 120V RMS, 25 A, 900 s	TBU-PL050-xxx-WH	1	MOV-07D201K	2
Telcordia GR-1089-CORE	5000 V, 500 A 2/10 μs 120V RMS, 25 A, 900 s	TBU-PL060-xxx-WH	1	MOV-10D201K	2
Enhanced Intra-building	1500 V, 100 A 2/10 μs 277V RMS, 25 A, 900 s	TBU-PL085-xxx-WH	1	MOV-10D431K	2
ITU-T	1500 V, 40 Ω 10/700 μ s 4000 V, 40 Ω 10/700 μ s 230 V rms 10 Ω -1000 Ω , 900 s 600 V rms 600 Ω , 0.2 s	TBU-PL085-xxx-WH	1	MOV-10D391K	2
K.20, K.21, K.45 Basic	1500 V, 40 Ω 10/700 μ s 4000 V, 40 Ω 10/700 μ s 230 V rms 10 Ω -1000 Ω , 900 s 600 V rms 600 Ω , 1 s	TBU-PL085-xxx-WH	1	TISP4400M3BJ	2
ITU-T	1500 V, 40 Ω 10/700 μ s 6000 V, 40 Ω 10/700 μ s* 230 V rms 10 Ω -1000 Ω , 900 s 600 V rms 600 Ω , 0.2 s 600 V rms 600 Ω , 1 s* 1500 V rms, 200 Ω 2s*	TBU-PL085-xxx-WH	1	MOV-10D391K	2
K.20, K.21, K.45 Enhanced	1500 V, 40 Ω 10/700 μs 6000 V, 40 Ω 10/700 μs 230 V rms 10 Ω -1000 Ω , 900 s 600 V rms 600 Ω , 0.2 s 600 V rms 600 Ω , 1 s 1500 V rms, 200 Ω 2s	TBU-PL085-xxx-WH	1	TISP4500H3BJ	2

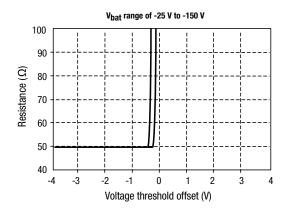
 $^{^{\}star}$ GDT Special Test Protector with DC breakdown (DCBD) of less than 330 V .

Note: The Le9500, Le9520 and Le9530 (VE950 series) require a 200 mA $I_{trigger}$ TBUTM device for normal operation.

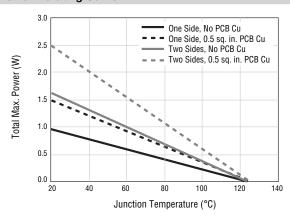
Device Pin Out

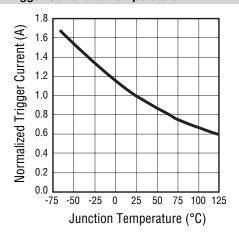

Pad Designation

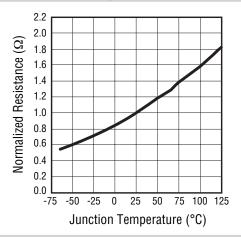
Pad #	Pin Out			
1	Line 1			
2	V _{dd}			
3	Not Used			
4	Line 1 SLIC			
5	Line 2 SLIC			
6	V _{SS}			
7	Not Used			
8	Line 2			

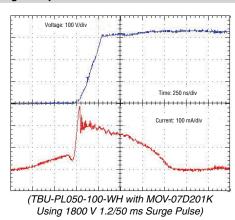

BOURNS

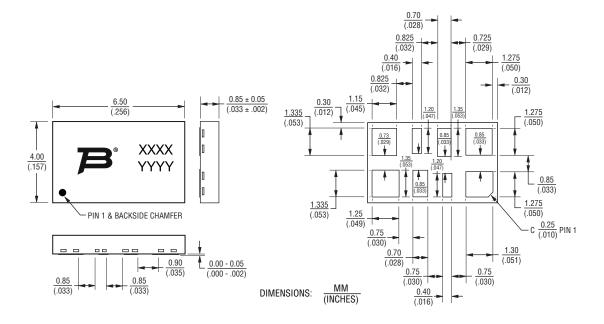
Performance Graphs


Typical V-I Characteristics (TBU-PL085-200-WH)

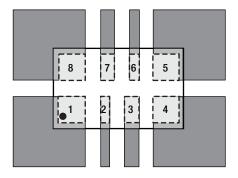

Tracking Voltage Characteristics


Power Derating Curve

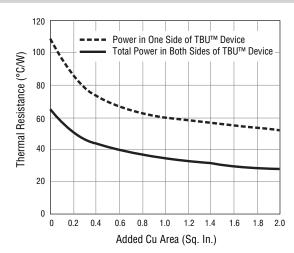

Typical Trigger Current vs. Temperature


Typical Resistance vs. Temperature

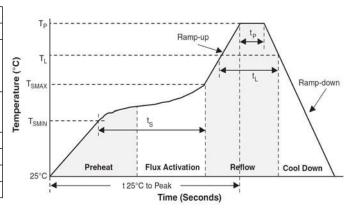
Typical Surge Response



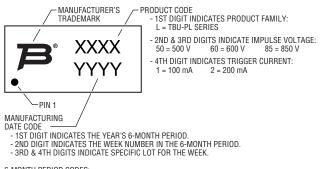
Product Dimensions


Recommended Pad Layout

TBU™ protectors have matte-tin termination finish. The suggested layout should use Non-Solder Mask Define (NSMD). The recommended stencil thickness is 0.10-0.12 mm (.004-.005 in.) with a stencil opening size 0.025 mm (.0010 in.) less than the device pad size. As when heat sinking any power device, it is recommended that wherever possible, extra PCB copper area is allowed. For minimum parasitic capacitance, do not allow any signal, ground or power signals beneath any of the pads of the device.

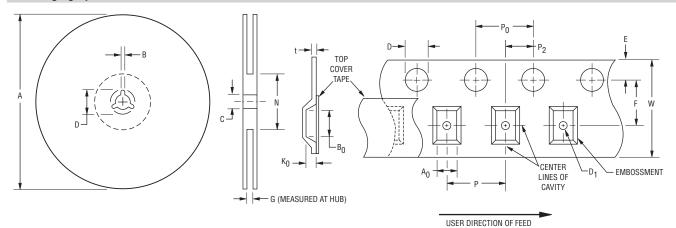

Dark grey areas show added PCB copper area for better thermal resistance.

Thermal Resistance vs Additional PCB Cu Area


Reflow Profile

Profile Feature	Pb-Free Assembly
Average Ramp-Up Rate (Tsmax to Tp)	3 °C/sec. max.
Preheat - Temperature Min. (Tsmin) - Temperature Max. (Tsmax) - Time (tsmin to tsmax)	150 °C 200 °C 60-180 sec.
Time maintained above: - Temperature (TL) - Time (tL)	217 °C 60-150 sec.
Peak/Classification Temperature (Tp)	260 °C
Time within 5 °C of Actual Peak Temp. (tp)	20-40 sec.
Ramp-Down Rate	6 °C/sec. max.
Time 25 °C to Peak Temperature	8 min. max.

How to Order TBU - PL 085 - 100 - WH TBU™ Product -PL = Dual Bidirectional Series Impulse Voltage Rating 050 = 500 V 060 = 600 V 085 = 850 V Trigger Current — 100 = 100 mA 200 = 200 mA Hold to Trip Ratio Suffix W = Hold to Trip Ratio Package Suffix -H = DFN Package


Typical Part Marking

6-MONTH PERIOD CODES: A = JAN-JUN 2009 B = JUL-DEC 2009 E = JAN-JUN 2011 F = JUL-DEC 2011 C = JAN-JUN 2010 D = JUL-DEC 2010

BOURNS

Packaging Specifications

QUANTITY: 3000 PIECES PER REEL

	A B C		В		D		G	N	
Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Ref.	Ref.
326	330	1.5	2.5	12.8	13.5	20.2		16.5	_102_
(12.835)	(13.002)	(.059)	(.098)	(.504)	(.531)	(.795)	_	(.650)	(4.016)

Α	A0		В0))1	E		ı	
Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	max.
4.30 (.169)	$\frac{4.50}{(.177)}$	6.70 (.264)	$\frac{6.90}{(.272)}$	1.5 (.059)	1.6 (.063)	1.5 (.059)	-	1.65 (.065)	1.85 (.073)	$\frac{7.4}{(.291)}$	7.6 (.299)
K	0	F	•	P	0	F	P ₂		t		V
Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.	Min.	Max.
1.0 (.039)	1.2 (.047)	7.9 (.311)	8.1 (.319)	3.9 (.159)	4.1 (.161)	1.9 (.075)	2.1 (.083)	0.25 (.010)	0.35 (.014)	15.7 (.618)	16.3 (.642)

DIMENSIONS: $\frac{MM}{(INCHES)}$

BOURNS®

Asia-Pacific: Tel: +886-2 2562-4117 • Fax: +886-2 2562-4116 **Europe:** Tel: +41-41 768 5555 • Fax: +41-41 768 5510 **The Americas:** Tel: +1-951 781-5500 • Fax: +1-951 781-5700

www.bourns.com