Life Time Graph of Z-Power LED

R(t) = Probability that unit will operate at time t

 $\lambda = failure rate$

t= Time component is on

30,000hr 50% degradation

Life time of P1 blue can be shorter than others as junction temperature goes higher.

Tj vs. Life Time Graph of Z-Power P1 1W Series

*This calculation can be done using the Arrhenius Model as shown below

$$R(t) = exp(-\lambda t)$$
$$\lambda_{2} = \lambda_{1} exp\left[\frac{E_{A}}{k}\left(\frac{1}{T_{1}} - \frac{1}{T_{2}}\right)\right]$$

where

R(t) = Probability that unit will operate at time t $\lambda = failure rate$ $t = Time \ component \ is \ on$ $\lambda_1 = failure \ rate \ at \ junction \ temperature \ T_1$ $\lambda_2 = failure \ rate \ at \ junction \ temperature \ T_2$ $E_A = activation \ energy, \ in \ units \ eV$ $k = Boltzmann's \ constant \ (8.617 \times 10^{-5} eV/\ K))$ $T = junction \ temperature \ in \ \ K(\ K = \ C + 273)$

Life time of P1 blue can be shorter than others as junction temperature goes higher.

*This calculation can be done using the Arrhenius Model as shown below

$$R(t)=exp(-xt)$$

- where
 - R(t) = Probability that unit will operate at time t
 - $\lambda = failure \ rate$
 - t= Time component is on

Tj vs. Life Time Graph of Z-Power 0.5W series

*This calculation can be done using the Arrhenius Model as shown below

$$R(t) = exp(-\lambda t)$$
$$\lambda_{2} = \lambda_{1} exp\left[\frac{E_{A}}{k}\left(\frac{1}{T_{1}} - \frac{1}{T_{2}}\right)\right]$$

where

R(t) = Probability that unit will operate at time t $\lambda = failure rate$ t = Time component is on $\lambda_1 = failure rate at junction temperature T_1$ $\lambda_2 = failure rate at junction temperature T_2$ $E_A = activation energy, in units eV$ $k = Boltzmann's constant (8.617 \times 10^{-5} eV/°K)$ T = junction temperature in °K(°K = °C + 273)

Life Time Graph of P4 1W Pure White for $T_J = 90$ °C (@350mA)

*This calculation can be done using the Arrhenius Model as shown below

 $R(t)=exp(-\lambda t)$

where

R(t) = Probability that unit will operate at time t

 $\lambda = failure rate$

t= *Time component is on*

Tj vs. Life Time Graph of Z-Power P4 1W Pure White Series

*This calculation can be done using the Arrhenius Model as shown below

$$\begin{split} R(t) = exp(-\lambda t) \\ \lambda_2 &= \lambda_1 exp\left[\frac{E_A}{k}\left(\frac{1}{T_1} - \frac{1}{T_2}\right)\right] \end{split}$$

where

R(t) = Probability that unit will operate at time t $\lambda = failure rate$ t = Time component is on $\lambda_1 = failure rate at junction temperature T_1$ $\lambda_2 = failure rate at junction temperature T_2$ $E_A = activation energy, in units eV$ $k = Boltzmann's constant (8.617 \times 10^{-5} eV/°K)$ T = junction temperature in °K(°K = °C + 273)

Life Time Graph of P4 2.5W Pure White for $T_J = 90$ °C (@700mA)

*This calculation can be done using the Arrhenius Model as shown below

 $R(t)=exp(-\lambda t)$

where

R(t) = Probability that unit will operate at time t

 $\lambda = failure rate$

t= *Time component is on*

Tj vs. Life Time Graph of Z-Power P4 2.5W Pure White Series

*This calculation can be done using the Arrhenius Model as shown below

$$\begin{split} R(t) = exp(-\lambda t) \\ \lambda_2 &= \lambda_1 exp\left[\frac{E_A}{k}\left(\frac{1}{T_1} - \frac{1}{T_2}\right)\right] \end{split}$$

where

R(t) = Probability that unit will operate at time t $\lambda = failure rate$ t = Time component is on $\lambda_1 = failure rate at junction temperature T_1$ $\lambda_2 = failure rate at junction temperature T_2$ $E_A = activation energy, in units eV$ $k = Boltzmann's constant (8.617 \times 10^{-5} eV/\%)$ $T = junction temperature in \ \%(\% = \% + 273)$

Life Time Graph of P4 4W Pure White for $T_J = 90$ °C (@1A)

*This calculation can be done using the Arrhenius Model as shown below

 $R(t)=exp(-\lambda t)$

where

R(t) = Probability that unit will operate at time t

 $\lambda = failure \ rate$

t= *Time component is on*

Tj vs. Life Time Graph of Z-Power P4 4W Pure White Series

*This calculation can be done using the Arrhenius Model as shown below

$$\begin{split} R(t) = exp(-\lambda t) \\ \lambda_2 &= \lambda_1 exp\left[\frac{E_A}{k}\left(\frac{1}{T_1} - \frac{1}{T_2}\right)\right] \end{split}$$

where

R(t) = Probability that unit will operate at time t $\lambda = failure rate$ t = Time component is on $\lambda_1 = failure rate at junction temperature T_1$ $\lambda_2 = failure rate at junction temperature T_2$ $E_A = activation energy, in units eV$ $k = Boltzmann's constant (8.617 \times 10^{-5} eV/\%)$ $T = junction temperature in \ \%(\% = \% + 273)$