

Film Capacitors

Metallized Polyester Film Capacitors (MKT)

 Series/Type:
 B32932 ... B32936

 Date:
 May 2012

© EPCOS AG 2012. Reproduction, publication and dissemination of this publication, enclosures hereto and the information contained therein without EPCOS' prior express consent is prohibited.

Metallized Polyester Film Capacitors (MKT)

B32932 ... B32936

AC applications (heavy duty series) / 305 V AC

Typical applications

- For connection in series with the mains
- For severe ambient conditions
- Capacitive power supply applications
- Energy meters

Climatic

- Max. operating temperature: 105 °C
- Climatic category (IEC 60068-1): 40/105/56

Features

- High stability of capacitance value
- X2 safety approval (up to 2.2 μF)

Construction

- Dielectric: metallized polyester
- Internal series connection
- Plastic case (UL 94 V-0)
- Epoxy resin sealing, flame-retardant

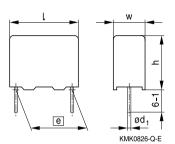
Terminals

- Parallel wire leads, lead-free tinned
- Standard lead lengths: 6 -1 mm
- Special lead lengths available on request

Marking

Manufacturer's logo, lot number, date code, rated capacitance (coded), capacitance tolerance (code letter), rated AC voltage (IEC), series number, sub-class (X2), dielectric code (MKT), climatic category

Delivery mode


Bulk (untaped, lead length 6 - 1 mm) Taped (Ammo pack or reel)

Approvals

Approval mark	Standards	Certificate	
3 510	EN 60384-14	40028058	
	IEC 60384-14		
<i>91</i>	UL 60384-14	E97863	
. 71	CSA E60384-14:09	E97863	

Note: X2 safety approval for C \leq 2.2 μF

Dimensional drawing

Dimensions in mm

Lead spacing @ ±0.4	Lead diameter d ₁	Туре
15	0.8	B32932
22.5	0.8	B32933
27.5	0.8	B32934
37.5	1.0	B32936

Marking examples

	3123123 A µ5 M 305V~
	X2 MKT/SH 40/105/56/B
EK10	c Al us
	KMK1318-E

AC applications (heavy duty series) / 305 V AC

B32932 ... B32936

Overview of available types

Lead spacing	15 mm	22.5 mm	27.5 mm	37.5 mm
Туре	B32932	B32933	B32934	B32936
C _R (μF)				
0.047				
0.068				
0.10				
0.15				
0.22				
0.33				
0.47				
0.56				
0.68				
0.82				
1.0				
1.5				
2.2				
3.3				
4.7				
6.8				
10				

B32932 ... B32936

AC applications (heavy duty series) / 305 V AC

Ordering codes and packing units

Lead spacing	C _R	Max. dimensions $w \times h \times l$	Ordering code (composition see	Ammo pack	Reel	Untaped	X2 safety
mm	μF	mm	below)	pcs./MOQ	pcs./MOQ	pcs./MOQ	appr.
15	0.047	5.0 imes 10.5 imes 18.0	B32932A3473+***	4680	5200	4000	Х
	0.068	$5.0\times10.5\times18.0$	B32932A3683+***	4680	5200	4000	Х
	0.10	$6.0\times11.0\times18.0$	B32932A3104+***	3840	4400	4000	Х
	0.15	$7.0\times12.5\times18.0$	B32932A3154+***	3320	3600	4000	Х
	0.22	$8.5 \times 14.5 \times 18.0$	B32932A3224+***	2720	2800	2000	Х
	0.33	$9.0\times17.5\times18.0$	B32932A3334+***	2560	2800	2000	Х
	0.47	$11.0\times18.5\times18.0$	B32932A3474M***	-	2200	1200	Х
22.5	0.10	$6.0\times15.0\times26.5$	B32933A3104+***	2720	2800	2880	Х
	0.15	$6.0\times15.0\times26.5$	B32933A3154+***	2720	2800	2880	Х
	0.22	$7.0\times16.0\times26.5$	B32933A3224+***	2320	2400	2520	Х
	0.33	$7.0\times16.0\times26.5$	B32933A3334+***	2320	2400	2520	Х
	0.47	$8.5\times16.5\times26.5$	B32933A3474M***	1920	2000	2040	Х
	0.47	$10.5\times16.5\times26.5$	B32933B3474+***	1560	1600	2160	Х
	0.56	$10.5\times16.5\times26.5$	B32933A3564+***	1560	1600	2160	Х
	0.68	$10.5\times18.5\times26.5$	B32933A3684+***	1560	1600	2160	Х
	0.82	$12.0\times22.0\times26.5$	B32933A3824+***	-	-	1800	Х
	1.0	$12.0\times22.0\times26.5$	B32933A3105M***	-	-	1800	Х
	1.0	$14.5 \times 29.5 \times 26.5$	B32933B3105+***	-	-	1040	Х
	1.5	$14.5 \times 29.5 \times 26.5$	B32933A3155+***	-	-	1040	Х

X = approval granted

MOQ = Minimum Order Quantity, consisting of 4 packing units.

Further intermediate capacitance values on request.

Composition of ordering code

- + = Capacitance tolerance code:
 - M = ±20%
 - $K = \pm 10\%$

*** = Packaging code:

- 289 = Ammo pack
- 189 = Reel
- 000 = Untaped (lead length 6 -1 mm)

AC applications (heavy duty series) / 305 V AC

B32932 ... B32936

Ordering codes and packing units

Lead	C _B	Max. dimensions	Ordering code	Ammo	Reel	Untaped	X2
spacing		$w \times h \times l$	(composition see	pack			safety
mm	μF	mm	below)	pcs./MOQ	pcs./MOQ	pcs./MOQ	appr.
27.5	0.47	$11.0 \times 19.0 \times 31.5$	B32934A3474+***	-	1400	1280	Х
	0.56	$11.0\times19.0\times31.5$	B32934A3564+***	-	1400	1280	Х
	0.68	$11.0\times19.0\times31.5$	B32934A3684+***	-	1400	1280	Х
	0.82	$11.0\times19.0\times31.5$	B32934A3824+***	-	1400	1280	Х
	1.0	$11.0\times19.0\times31.5$	B32934A3105M***	-	1400	1280	Х
	1.0	$11.0\times21.0\times31.5$	B32934B3105+***	-	1400	1280	Х
	1.5	$13.5\times23.0\times31.5$	B32934B3155M***	-	1200	1120	Х
	1.5	$14.0\times24.5\times31.5$	B32934D3155+***	-	-	1040	Х
	2.2	$18.0\times27.5\times31.5$	B32934B3225+***	-	-	800	Х
	3.3	$21.0\times31.0\times31.5$	B32934A3335+***	-	-	720	_
	4.7	$22.0\times36.5\times31.5$	B32934A3475M***	-	-	640	_
37.5	1.0	$12.0\times22.0\times41.5$	B32936A3105+***	-	-	1620	Х
	1.5	$12.0\times22.0\times41.5$	B32936A3155+***	-	-	1620	Х
	2.2	$14.0\times25.0\times41.5$	B32936A3225+***	-	-	1380	Х
	3.3	$16.0\times28.5\times41.5$	B32936A3335+***	-	-	800	-
	4.7	$20.0\times39.5\times41.5$	B32936A3475+***	-	-	640	—
	6.8	$28.0\times42.5\times41.5$	B32936A3685+***	-	-	440	—
	10.0	$28.0\times42.5\times41.5$	B32936A3106M***	-	-	440	—

X = approval granted

MOQ = Minimum Order Quantity, consisting of 4 packing units. Further intermediate capacitance values on request.

Composition of ordering code

- + = Capacitance tolerance code:
 - M = ±20% K = ±10%

*** = Packaging code:

289 = Ammo pack

189 = Reel

000 = Untaped (lead length 6 -1 mm)

мкт

B32932 ... B32936

AC applications (heavy duty series) / 305 V AC

Technical data

+105 °C			
ta a S			
-		-	
	-	-	
C > 1 μF	8	-	
$C_{\text{R}} \leq 0.33 \ \mu\text{F}$	=	$C_{R} > 0.3$	3 μF
$30000 \text{ M}\Omega$		10000 s	
В			
±10% (K), ±	20% (M)		
305 V (50/60	0 Hz)		
$T_A \le 105 \ ^{\circ}C$		$V_{op} = 1.25 \cdot V_{AC} (1000 \text{ h})$	
Test condition	ons		
1. Tempera	ture:	+85 °C ±	-2 °C
Relative I	humidity (RH):	: 85% ±2%	%
Test dura	ation:	1000 ho	urs
Voltage v	alue:	240 V A	C, 50 Hz
2. Tempera	ture:	+40 °C ±	⊧2 °C
		1000 ho	
Voltage v	alue:	240 V A	C, 50 Hz
Capacitance	e change ($\Delta C/$	C):	≤ 10%
	0 (,	≤ 5 · 10 ⁻³ (at 1 kHz)
(Δtan δ):	0		. ,
			\geq 50% of initial limit
or time constant $\tau = C_{R} \cdot R_{ins}$:			
	$\begin{array}{c} \tan\delta\\ C\leq 1\ \mu\text{F}\\ C>1\ \mu\text{F}\\ C>1\ \mu\text{F}\\ \hline\\ C_R\leq 0.33\ \mu\text{F}\\ \hline\\ 30000\ M\Omega\\ \end{array}$	$\begin{array}{c c} tan \delta & 1 \text{ kHz} \\ \hline C \leq 1 \ \mu\text{F} & 8 \\ \hline C > 1 \ \mu\text{F} & 8 \\ \hline C > 1 \ \mu\text{F} & 8 \\ \hline C \geq 1 \ \mu\text{F} & 8 \\ \hline C \geq 1 \ \mu\text{F} & 8 \\ \hline C \geq 1 \ \mu\text{F} & 8 \\ \hline C \geq 1 \ \mu\text{F} & 8 \\ \hline C \geq 1 \ \mu\text{F} & 8 \\ \hline C \geq 1 \ \mu\text{F} & 8 \\ \hline C \geq 1 \ \mu\text{F} & 8 \\ \hline C \geq 1 \ \mu\text{F} & 8 \\ \hline C \geq 1 \ \mu\text{F} & 8 \\ \hline C \geq 1 \ \mu\text{F} & 8 \\ \hline C \geq 1 \ \mu\text{F} & 8 \\ \hline C \geq 1 \ \mu\text{F} & 8 \\ \hline 10\% (\text{K}), \pm 20\% (\text{M}) \\ \hline 305 \ V (50/60 \ \text{Hz}) \\ \hline T_{\text{A}} \leq 105 \ ^{\circ}\text{C} \\ \hline Test \ conditions \\ \hline 1. \ Temperature: \\ Relative humidity (\text{RH}): \\ Test \ duration: \\ Voltage \ value: \\ \hline 2. \ Temperature: \\ Relative \ humidity (\text{RH}): \\ Test \ duration: \\ Voltage \ value: \\ \hline Capacitance \ change \ (\Delta\text{C}/ Dissipation \ factor \ change \\ (\Delta tan \ \delta): \\ Insulation \ resistance \ R_{ins} \\ \hline \end{array}$	$\begin{array}{c c c c c c c c c c c c c c c c c c c $

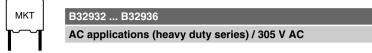
AC applications (heavy duty series) / 305 V AC

MKT

Pulse handling capability

"dV/dt" represents the maximum permissible voltage change per unit of time for non-sinusoidal voltages, expressed in $V/\mu s$.

"k_0" represents the maximum permissible pulse characteristic of the waveform applied to the capacitor, expressed in V²/µs.


Note:

The values of dV/dt and k_0 provided below must not be exceeded in order to avoid damaging the capacitor.

dV/dt and k₀ values

Lead spacing (mm)	15	22.5	27.5	37.5
dV/dt (V/µs)	300	150	100	50
k ₀ (V²/μs)	360000	180000	120000	60000

Mounting guidelines

1 Soldering

1.1 Solderability of leads

The solderability of terminal leads is tested to IEC 60068-2-20, test Ta, method 1.

Before a solderability test is carried out, terminals are subjected to accelerated ageing (to IEC 60068-2-2, test Ba: 4 h exposure to dry heat at 155 °C). Since the ageing temperature is far higher than the upper category temperature of the capacitors, the terminal wires should be cut off from the capacitor before the ageing procedure to prevent the solderability being impaired by the products of any capacitor decomposition that might occur.

Solder bath temperature	235 ±5 °C
Soldering time	2.0 ±0.5 s
Immersion depth	2.0 + 0/-0.5 mm from capacitor body or seating plane
Evaluation criteria:	
Visual inspection	Wetting of wire surface by new solder \ge 90%, free-flowing solder

1.2 Resistance to soldering heat

Resistance to soldering heat is tested to IEC 60068-2-20, test Tb, method 1A. Conditions:

Serie	S	Solder bath temperature	Soldering time
MKT	boxed (except $2.5 \times 6.5 \times 7.2$ mm) coated uncoated (lead spacing > 10 mm)	260 ±5 °C	10 ±1 s
MFP MKP	(lead spacing > 7.5 mm)		
MKT	boxed (case $2.5 \times 6.5 \times 7.2$ mm)		5±1 s
МКР МКТ	(lead spacing \leq 7.5 mm) uncoated (lead spacing \leq 10 mm) insulated (B32559)		< 4 s recommended soldering profile for MKT uncoated (lead spacing \leq 10 mm) and insulated (B32559)

МКТ

B32932 ... B32936

	D02302 D02900			
	AC applications (heavy duty series) / 305 V AC			
	1 1			
300	KMK1242-V			
°C 260 °C	4 s			
T 250	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			
200				
150				
100				
50				
0				
0 50 100 150	200 s 250 ——► t			
Immersion depth	2.0 + 0/-0.5 mm from capacitor body or seating plane			
Shield	Heat-absorbing board, (1.5 \pm 0.5) mm thick, between capacitor			
	body and liquid solder			
Evaluation criteria:				
Visual inspection	No visible damage			
$\Delta C/C_0$	2% for MKT/MKP/MFP			
-	5% for EMI suppression capacitors			
tan δ	As specified in sectional specification			

AC applications (heavy duty series) / 305 V AC

1.3 General notes on soldering

Permissible heat exposure loads on film capacitors are primarily characterized by the upper category temperature T_{max} . Long exposure to temperatures above this type-related temperature limit can lead to changes in the plastic dielectric and thus change irreversibly a capacitor's electrical characteristics. For short exposures (as in practical soldering processes) the heat load (and thus the possible effects on a capacitor) will also depend on other factors like:

- Pre-heating temperature and time
- Forced cooling immediately after soldering
- Terminal characteristics:
- diameter, length, thermal resistance, special configurations (e.g. crimping)
- Height of capacitor above solder bath
- Shadowing by neighboring components
- Additional heating due to heat dissipation by neighboring components
- Use of solder-resist coatings

The overheating associated with some of these factors can usually be reduced by suitable countermeasures. For example, if a pre-heating step cannot be avoided, an additional or reinforced cooling process may possibly have to be included.

EPCOS recommends the following conditions:

- Pre-heating with a maximum temperature of 110 °C
- Temperature inside the capacitor should not exceed the following limits:
 - MKP/MFP 110 °C
 - MKT 160 °C
- When SMD components are used together with leaded ones, the leaded film capacitors should not pass into the SMD adhesive curing oven. The leaded components should be assembled after the SMD curing step.
- Leaded film capacitors are not suitable for reflow soldering.

Uncoated capacitors

For uncoated MKT capacitors with lead spacings \leq 10 mm (B32560/B32561) the following measures are recommended:

- pre-heating to not more than 110 °C in the preheater phase
- rapid cooling after soldering

MKT

AC applications (heavy duty series) / 305 V AC

Cautions and warnings

- Do not exceed the upper category temperature (UCT).
- Do not apply any mechanical stress to the capacitor terminals.
- Avoid any compressive, tensile or flexural stress.
- Do not move the capacitor after it has been soldered to the PC board.
- Do not pick up the PC board by the soldered capacitor.
- Do not place the capacitor on a PC board whose PTH hole spacing differs from the specified lead spacing.
- Do not exceed the specified time or temperature limits during soldering.
- Avoid external energy inputs, such as fire or electricity.
- Avoid overload of the capacitors.

The table below summarizes the safety instructions that must always be observed. A detailed description can be found in the relevant sections of the chapters "General technical information" and "Mounting guidelines".

Торіс	Safety information	Reference chapter "General technical information"
Storage conditions	Make sure that capacitors are stored within the specified range of time, temperature and humidity conditions.	4.5 "Storage conditions"
Flammability	Avoid external energy, such as fire or electricity (passive flammability), avoid overload of the capacitors (active flammability) and consider the flammability of materials.	5.3 "Flammability"
Resistance to vibration	Do not exceed the tested ability to withstand vibration. The capacitors are tested to IEC 60068-2-6. EPCOS offers film capacitors specially designed for operation under more severe vibration regimes such as those found in automotive applications. Consult our catalog "Film Capacitors for Automotive Electronics".	5.2 "Resistance to vibration"

мкт

B32932 ... B32936

AC applications (heavy duty series) / 305 V AC

Торіс	Safety information	Reference chapter "Mounting guidelines"
Soldering	Do not exceed the specified time or temperature limits during soldering.	1 "Soldering"
Cleaning	Use only suitable solvents for cleaning capacitors.	2 "Cleaning"
Embedding of capacitors in finished assemblies	When embedding finished circuit assemblies in plastic resins, chemical and thermal influences must be taken into account. Caution: Consult us first, if you also wish to embed other uncoated component types!	3 "Embedding of capacitors in finished assemblies"

B32932 ... B32936

AC applications (heavy duty series) / 305 V AC

h---1

Symbols and terms

Symbol	English	German	
α	Heat transfer coefficient	Wärmeübergangszahl	
α_{c}	Temperature coefficient of capacitance	Temperaturkoeffizient der Kapazität	
A	Capacitor surface area	Kondensatoroberfläche	
βc	Humidity coefficient of capacitance	Feuchtekoeffizient der Kapazität	
С	Capacitance	Kapazität	
C _R	Rated capacitance	Nennkapazität	
ΔC	Absolute capacitance change	Absolute Kapazitätsänderung	
$\Delta C/C$	Relative capacitance change (relative	Relative Kapazitätsänderung (relative	
	deviation of actual value)	Abweichung vom Ist-Wert)	
$\Delta C/C_R$	Capacitance tolerance (relative deviation	Kapazitätstoleranz (relative Abweichung	
	from rated capacitance)	vom Nennwert)	
dt	Time differential	Differentielle Zeit	
Δt	Time interval	Zeitintervall	
ΔT	Absolute temperature change	Absolute Temperaturänderung	
	(self-heating)	(Selbsterwärmung)	
∆tan δ	Absolute change of dissipation factor	Absolute Änderung des Verlustfaktors	
ΔV	Absolute voltage change	Absolute Spannungsänderung	
dV/dt	Time differential of voltage function (rate	Differentielle Spannungsänderung	
	of voltage rise)	(Spannungsflankensteilheit)	
$\Delta V / \Delta t$	Voltage change per time interval	Spannungsänderung pro Zeitintervall	
E	Activation energy for diffusion	Aktivierungsenergie zur Diffusion	
ESL	Self-inductance	Eigeninduktivität	
ESR	Equivalent series resistance	Ersatz-Serienwiderstand	
f	Frequency	Frequenz	
f ₁	Frequency limit for reducing permissible	Grenzfrequenz für thermisch bedingte	
	AC voltage due to thermal limits	Reduzierung der zulässigen	
		Wechselspannung	
f ₂	Frequency limit for reducing permissible	Grenzfrequenz für strombedingte	
	AC voltage due to current limit	Reduzierung der zulässigen	
		Wechselspannung	
f _r	Resonant frequency	Resonanzfrequenz	
F _D	Thermal acceleration factor for diffusion	Therm. Beschleunigungsfaktor zur	
-	Deveties fester	Diffusion	
F _T	Derating factor	Deratingfaktor	
1	Current (peak)	Stromspitze	
I _C	Category current (max. continuous	Kategoriestrom (max. Dauerstrom)	
	current)		

мкт **Г**----- B32932 ... B32936

AC applications (heavy duty series) / 305 V AC

Symbol	English	German
I _{RMS}	(Sinusoidal) alternating current,	(Sinusförmiger) Wechselstrom
	root-mean-square value	
i _z	Capacitance drift	Inkonstanz der Kapazität
k ₀	Pulse characteristic	Impulskennwert
Ls	Series inductance	Serieninduktivität
λ	Failure rate	Ausfallrate
λο	Constant failure rate during useful	Konstante Ausfallrate in der
	service life	Nutzungsphase
λ_{test}	Failure rate, determined by tests	Experimentell ermittelte Ausfallrate
P _{diss}	Dissipated power	Abgegebene Verlustleistung
P_{gen}	Generated power	Erzeugte Verlustleistung
Q	Heat energy	Wärmeenergie
ρ	Density of water vapor in air	Dichte von Wasserdampf in Luft
R	Universal molar constant for gases	Allg. Molarkonstante für Gas
R	Ohmic resistance of discharge circuit	Ohmscher Widerstand des
		Entladekreises
Ri	Internal resistance	Innenwiderstand
R _{ins}	Insulation resistance	Isolationswiderstand
R _P	Parallel resistance	Parallelwiderstand
Rs	Series resistance	Serienwiderstand
S	severity (humidity test)	Schärfegrad (Feuchtetest)
t	Time	Zeit
Т	Temperature	Temperatur
τ	Time constant	Zeitkonstante
tan δ	Dissipation factor	Verlustfaktor
$tan \delta_{\scriptscriptstyle D}$	Dielectric component of dissipation factor	Dielektrischer Anteil des Verlustfaktors
tan δ _P	Parallel component of dissipation factor	Parallelanteil des Verlfustfaktors
tan δ _s	Series component of dissipation factor	Serienanteil des Verlustfaktors
T _A	Ambient temperature	Umgebungstemperatur
T _{max}	Upper category temperature	Obere Kategorietemperatur
T _{min}	Lower category temperature	Untere Kategorietemperatur
t _{oL}	Operating life at operating temperature	Betriebszeit bei Betriebstemperatur und
	and voltage	-spannung
Top	Operating temperature	Beriebstemperatur
T _R	Rated temperature	Nenntemperatur
T _{ref}	Reference temperature	Referenztemperatur
t _{SL}	Reference service life	Referenz-Lebensdauer
V _{AC}	AC voltage	Wechselspannung

AC applications (heavy duty series) / 305 V AC

MKT

Symbol	English	German
Vc	Category voltage	Kategoriespannung
V _{C,RMS}	Category AC voltage	(Sinusförmige)
		Kategorie-Wechselspannung
V _{CD}	Corona-discharge onset voltage	Teilentlade-Einsatzspannung
V_{ch}	Charging voltage	Ladespannung
V _{DC}	DC voltage	Gleichspannung
V_{FB}	Fly-back capacitor voltage	Spannung (Flyback)
Vi	Input voltage	Eingangsspannung
Vo	Output voltage	Ausgangssspannung
V _{op}	Operating voltage	Betriebsspannung
V _p	Peak pulse voltage	Impuls-Spitzenspannung
V_{pp}	Peak-to-peak voltage Impedance	Spannungshub
V _R	Rated voltage	Nennspannung
ν _R	Amplitude of rated AC voltage	Amplitude der Nenn-Wechselspannung
V_{RMS}	(Sinusoidal) alternating voltage, root-mean-square value	(Sinusförmige) Wechselspannung
V _{sc}	S-correction voltage	Spannung bei Anwendung "S-correction"
V_{sn}	Snubber capacitor voltage	Spannung bei Anwendung "Beschaltung"
Z	Impedance	Scheinwiderstand
е	Lead spacing	Rastermaß

The following applies to all products named in this publication:

- 1. Some parts of this publication contain statements about the suitability of our products for certain areas of application. These statements are based on our knowledge of typical requirements that are often placed on our products in the areas of application concerned. We nevertheless expressly point out that such statements cannot be regarded as binding statements about the suitability of our products for a particular customer application. As a rule, EPCOS is either unfamiliar with individual customer applications or less familiar with them than the customers themselves. For these reasons, it is always ultimately incumbent on the customer to check and decide whether an EPCOS product with the properties described in the product specification is suitable for use in a particular customer application.
- 2. We also point out that in individual cases, a malfunction of electronic components or failure before the end of their usual service life cannot be completely ruled out in the current state of the art, even if they are operated as specified. In customer applications requiring a very high level of operational safety and especially in customer applications in which the malfunction or failure of an electronic component could endanger human life or health (e.g. in accident prevention or lifesaving systems), it must therefore be ensured by means of suitable design of the customer application or other action taken by the customer (e.g. installation of protective circuitry or redundancy) that no injury or damage is sustained by third parties in the event of malfunction or failure of an electronic component.
- 3. The warnings, cautions and product-specific notes must be observed.
- 4. In order to satisfy certain technical requirements, some of the products described in this publication may contain substances subject to restrictions in certain jurisdictions (e.g. because they are classed as hazardous). Useful information on this will be found in our Material Data Sheets on the Internet (www.epcos.com/material). Should you have any more detailed questions, please contact our sales offices.
- 5. We constantly strive to improve our products. Consequently, the products described in this publication may change from time to time. The same is true of the corresponding product specifications. Please check therefore to what extent product descriptions and specifications contained in this publication are still applicable before or when you place an order. We also reserve the right to discontinue production and delivery of products. Consequently, we cannot guarantee that all products named in this publication will always be available. The aforementioned does not apply in the case of individual agreements deviating from the foregoing for customer-specific products.
- Unless otherwise agreed in individual contracts, all orders are subject to the current version of the "General Terms of Delivery for Products and Services in the Electrical Industry" published by the German Electrical and Electronics Industry Association (ZVEI).
- 7. The trade names EPCOS, BAOKE, Alu-X, CeraDiode, CeraLink, CSMP, CSSP, CTVS, DeltaCap, DigiSiMic, DSSP, FilterCap, FormFit, MiniBlue, MiniCell, MKD, MKK, MLSC, MotorCap, PCC, PhaseCap, PhaseCube, PhaseMod, PhiCap, SIFERRIT, SIFI, SIKOREL, SilverCap, SIMDAD, SiMic, SIMID, SineFormer, SIOV, SIP5D, SIP5K, ThermoFuse, WindCap are trademarks registered or pending in Europe and in other countries. Further information will be found on the Internet at www.epcos.com/trademarks.